NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

ANALYSIS FOR THE PURPOSE OF
" DEVELOPING COURSE MATERIAL FOR
INSTRUCTING GRADUATE STUDENTS IN
OBJECT ORIENTED PROGRAMMING WITH
ADA 95

by
John T. Drimousis
March 1995

Thesis Advisor: David Gaitros

Approved for public release; distribution is unlimited.

19950428 (52

REPORT DOCUMENTATION PAGE "‘ Form Approved OMB No. 0704

=

lic reporting burden for this collection of information is estimated to average 1 hour per response, induding the time for reviewing mnstruction, searching existing data
urces, gathering and matntaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
pect of this collection of information, indluding suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and
eports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
/ashington DC 20503.

Hiixd

. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1995 Master’s Thesis
. TITLE AND SUBTITLE 5. FUNDING NUMBERS

ANALYSIS FOR THE PURPOSE OF DEVELOPING COURSE
MATERIAL FOR INSTRUCTING GRADUATE STUDENTS IN
OBJECT ORIENTED PROGRAMMING WITH ADA 95

:q

Ib. AUTHOR John T. Drimousis

[7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Naval Postgraduate School REPORT NUMBER
Monterey CA 93943-5000
b. SPONSORING/MONITORING AGENCY NAME(S) AND 10. SPONSORING/MONITORING
ADDRESS(ES) AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or
Tmilion of the Department of Defense or the U.S. Government.

2a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for 12b. DISTRIBUTION CODE
ublic release; distribution unlimited

(h3. ABSTRACT (maximum 200 words)

The Department of Computer Science located at the Naval Postgraduate School, Monterey,
California recently decided to teach the new version of ADA 95 in their beginning programming
class (CS 2972). The problem was two fold: (1) Teaching a newly altered language incorporating
features from the old version into the new while retaining forward compatibility and (2) presenting
object oriented design and programming features to students who have little or no programming
experience.

What evolved as the best method was to postpone the introduction of object-oriented design until the
latter half of the class. Highlights and differences of the languages would be presented during the
course of the class with emphasis placed an old features that should be avoided that would make
forward compatibility difficult. What resulted was a complete restructuring of the course.

4. SUBJECT TERMS 15. NUMBER OF PAGES
object-oriented programming, class wide programming,
ispatching, late binding

424

16. PRICE CODE

7. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF ABSTRACT
CLASSIFICATION OF CLASSIFICATION CLASSIFICATION UL
REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified
NSN 7540-01-280-5500 N Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

ii

Approved for public release; distribution is unlimited.

ANALYSIS FOR THE PURPOSE OF DEVELOPING COURSE MATERIAL FOR
INSTRUCTING GRADUATE STUDENTS IN OBJECT ORIENTED
PROGRAMMING WITH ADA 95

by
John T. Drimousis
Lieutenant, Hellenic Navy

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
Margh 1995
“/X'T/frﬁ / I ‘ .
Author: r’ A VAN
— John Drimousis

Approved bm / 7 (\Q 1L =

David A. Gaitros, Advisor

Lucia Luqi, Co-Advisor

\%@(MMC |

Ted Lewts, Chairman
Department of Computer Science

il

ABSTRACT

The Department of Computer Science located at the Naval Postgraduate School,
Monterey, California recently decided to teach the new version of ADA 95 in their
beginning programming class (CS 2972). The problem was two fold: (1) Teaching a newly
altered language incorporating features from the old version into the new while retaining
forward compatibility and (2) presenting object oriented design and programming features
to students who have little or no programming experience.

What evolved as the best method was to postpone the introduction of object
oriented design until latter half of the class. Highlights and differences of the languages
would be presented during the course of the class with emphasis placed on old features

that should be avoided that would make forward compatibility difficult. What resulted was

a complete restructuring of the course.

iv

TABLE OF CONTENTS

ILINTRODUCTION 1
A. USE OF ADA IN THE COMPUTER SCIENCE DEPARTMENT 1
B. HISTORY OF ADA ... 1
C. ADA S5 GENERATION 2
D. MAIN FEATURES OF ADA G5 3

1.dnterfacing. ... 4
2. Programming by Extension(Object-Oriented Programming). 4
3. Program Libraries. 4
4. TaSKING. .o 4
E. THE APPROACH e 5
F.OBJECTIVES .. 5
G. BACKGROUND ... 6
H. ORGANIZATION OF THESIS 7

N HIGHLIGHTS OF ADA 95 9

A. OBJECT ORIENTED PROGRAMMING, 10
1. Programming by Extension 11

2. Class wide Programming ...t 13
a.Dispatching 14

b. Classwide accesstype i, 15

3. Abstract Types and Subprograms ... 15

4 Late Binding 16

B. HIERARCHICAL LIBRARIES 17
1. ChildUnits 18

2. PrivatechildUnits 19

C. PROTECTED TYPES e 20
D. EXTENSIONS TOGENERICS 21
E. EXTENSIONS TO EXCEPTIONS 22

HI. UPWARD INCOMPATIBILITIES 25
A. UPWARD INCOMPATIBILITIESo, 26

1. Reserved Words i 26
a Abstract ... 26

Cc.Protected 26

d RequUEeUE 27

€. Tagged ... 27

foUNt 27

2. Type Character 27

3. Library Package Bodiesl 27

4. Indefinite Generic Parameters e 28

S.NuUmeriC Brror 28

B. GUIDELINES FOR ADA 83 PROGRAMS 28

1. Donotusethereservedwords 28

2. Do not declare the identifiers Wide_String, Wide_Character 29

3. Do not apply use-clauses to package SYSTEM 30

4. Do not declare the identifier APPEND_FILE 30

5. Enumeration type incompatibilities 30

6. Do not use accuracy constraints in subtype declarations. 32

7. Representation clauses forrealtypes 32

8. Derived types 32

S. Generic formal private types L. 33

10. Implicit exceptions 34

11. Attribute values of realtypes 35

IV.COURSE OUTLINE 37

A. WHY USE ADA 95 AS THE BASIC PROGRAMMING ..., 37
LANGUAGE

1. Modern programming language, 37

2. Departmentof navy policy 37

B. COURSE CONSTRUCTION 37

1.Core Ada95language il 38

2. Object Oriented programming ...t .. 39

V. CONCLUSION ... 41

A.ACCOMPLISHMENTS i, 41

1. Anoverviewof AdaS5language 41

2. Incompatibilities. 41

vi

3. Guidelines to ada 95 programmers il 41

4. Course outline forthecorelanguage 42
5. Course outline for the object oriented programming with ada 42
O
B. RECOMMENDATIONS 42
1. Ada 95 the basic general programming language for ... 42
computer science department
2. Structured Programmingwithada85 42
3. Textbook ... 43
4 FUtUre WOTK ... 43
a. Advanced ada95course i 43
b. Comparisonada95andc++ 43
APPENDIX A 45
APPENDIX B .. . 377
LISTOF REFERENCES e 411
INITIAL DISTRIBUTION LIST ... 413

Accesion For

NTIS Crads
DYIC T

vii

viii

LIST OF FIGURES
1. TrEE OF TYPES ..o

2 N W TTee S TUCIUT . . oo e

ix

I. INTRODUCTION

A. USE OF ADA IN THE COMPUTER SCIENCE DEPARTMENT

The Department of Computer Science at the Naval Postgraduate School (NPS) basis
there Software Engineering and several other curriculum tracks are based on the Depart-
ment of Defenses' ADA programming language. With the development of a new version of
ADA (ADA 95) and the addition of the Object Oriented paradigm, a new method of
teaching ADA to beginning computer scientists was required.

In addition to teaching the new language to beginning students the Department of
Computer Science is required to continuously improve their curriculum to offer the best
possible course of study to the students and to keep up with their technology. Object Ori-
ented programming is gaining popularity as a very useful means of developing more reli-
able software. ADA 95 has all of the properties required by todays software developers.

The policy established by the DoD requires all software possible should be devel-
oped using the new ADA9S5 and the Department of Computer Science at NPS is commit-
ted to supporting this policy. This thesis will lay the framework for all future ADA95

course development and implementation.

B. HISTORY OF ADA

In 1974, the Department of Defense (DoD) published a report estimating the future
costs of its software at the horrendous amount of over $3 billion annually. In addition,
there are hundreds of languages or dialects being used by the DoD and its contractors,
making it difficult to interchange programs, programmers and virtually impossible for ef-
fective software maintenance. The services to minimize the software cost and eliminate all
these serious problems, the same year, proposed to DoD the adoption of a common lan-
guage. (Sammet, 1986, pp. 723-729)

Early in 1977 the set of requirements called IRONMAN has been completed and
the DoD held a design competition. Seventeen proposals were received, and four were

chosen to go ahead in parallel and in competition. The four contractors with their colour

coding were, Cii-Honeywell Bull (Green), Intermetrics (Red), SofTech(Blue) and SRI
International (Yellow) . In early 1978 the initial designs were ready and the DoD judged
that the Cii-Honeywell Bull and Intermetrics designs showed more promise than the other
two which are eliminated. The final designs, based on the final set of requirements, called
STEELMAN were sent out for public commentary. The final choice of the language was
made on 2 May 1979 and the design competition's eventual winner was the Cii-Honeywell
Bull (Green) team, led by the Frenchman Jean Ichbiah. (daCosta, 1984, pp. 1-4)

The name Ada was chosen to honor the mathematician Lady Augusta Ada Byron,
Countess of Lovelace and daughter of the poet Lord Byron. In early 1983 the Ada lan-
guage was further modified to reflect in the final changes that led to the ANSI (American
National Standards Institute) standard document.

This new language included facilities offered by classical languages such as Pascal
as well as facilities often found only in specialized languages like Simula 67. Thus the Ada
has the ability to define types, subprograms to serve the need for modularity, whereby
data, types and subprograms can be packaged. In addition to those aspects, the language
covers real-time programming, with facilities to model parallel tasks and to handle excep-

tions facilities that only this language offered only. (Gonzalez, 1991, pp. 1-1)

C. ADA 95 GENERATION

Although Ada 83 has all the aspects to provide a single flexible yet portable lan-
guage for real-time embedded systems to meet the needs of the US DoD, its domain of
application had expanded to include many other areas, such as large-scale information sys-
tems, distributed systems, large scientific computation, and systems programming. Fur-
thermore, its user base had expanded to include all major defense agencies of the western
world, the whole of aerospace community and increasingly many areas in civil and private
sectors such as telecommunications, process control and monitoring systems. Indeed, the
expansion in the civil sector is such that civil applications now generate the dominant reve-

nues of many vendors. (Ada 9x Mapping / Revision Team , 1994, pp. 1-1, 1-2)

In 1988, the DoD, to ensure the continuation of Ada's implementation to all the
present and future application areas and in addition to ensure that the needs of the whole-
world-wide Ada community (and not just the defense community) were taken into ac-
count, initiated a revision of ANSI/MIL-STD 1815A (Ada 83). By December 1990, all
the revision requests had been analyzed along with the 850 Ada revised issues which had
been submitted between 1983 and 1988 to ISO working group 9. This analysis resulted in
the publication of the following new Ada Requirements Document in December 1990 :

Revise ANSI/MIL-STD-1815A-1983 to reflect current essential requirements

with minimum negative impact and maximum positive impact to the Ada

community.

By January 1991, the process of mapping the requirements into proposed language
changes was well underway. A mapping / revision team proposes language changes meet-
ing the requirements document. Four prototyping teams (representing different compilers,
computer architecture and applications domain) try out the language changes in their com-
pilers and run specific application software on the modified compiler to fully evaluate
impact.

The first phase of the ANSI/ISO approval process was successfully completed in
January 31, 1993. In March 1994, ISO delegates discussed technical issues with the Ada
94 team, and the last phase (or standardization process) for Ada 94 as an ANSI, and ISO
standard will be accomplished by December 1994 or during the first months in 1995. (' An-
derson, 1994, pp. 16)

D. MAIN FEATURES OF ADA 95

The output of the Mapping / revision team showed that the new Ada or Ada 9X
as was named the language, needs more attention - improvement to accomplish the gen-
eral features that the users need from the revision Ada, in the following four areas: (Ada

9x Mapping / Revision Team , 1994, pp. 1-3)

1. Interfacing

Ada 83 recognizes the importance of being able to interface to external systems by
the provision of features such as representation clauses and pragmas. Nevertheless, it is
sometimes not easy to interface certain Ada 83 programs to other language systems. A
general need was felt for a more flexible approach allowing, for instance, the secure ma-
nipulation of references and the passing of procedures as parameters. An example arises
when interfacing into GUI's where it is often necessary to pass a procedure as a parameter

for call-back.

2. Programming By Extension(Object-Oriented Programming)

Although Ada's package and generic capability are an excellent foundation, never-
theless experience with the Object Oriented paradigm in other languages had shown the
advantages of being able to extend a program without any modification to existing proven

components.

3. Program Libraries

The Ada program library brings important benefits by extending the strong typing
across the boundaries between separately compiled units. However, the flat nature of the
Ada 83 library gave problems of visibility control; for example it prevented two library
packages from sharing a full view of a private type. A common consequence of the flat
structure was the package become large and monolithic. This hindered understanding and

increased the cost of recompilation.

4. Tasking

The Ada rendezvous paradigm is a useful model for the abstract description of
many tasking problems. But experience had shown that a more static monitor like ap-
proach was also desirable for common shared-data access applications. Furthermore the
Ada priority model needed revision in order to enable users to take advantage of the

greater understanding of scheduling theory which had emerged since Ada 83 was defined.

E. THE APPROACH

The revision team had to enhance the Ada functionality in Interfacing, Object Ori-
ented Programming, Libraries, and Tasking facilities by following the rule, to make the
minimum corrections to the existing Ada and so to maintain the compatibility. The revi-
sion team had an already big advantage the experience in the last ten years on Ada. After
a careful analysis of the limitations that were offered by the Ada 83 a new compatible Ada
was produced which implements all the new needs that are desired both by the DoD and
the civilian world. (Anderson, 1992, pp. 35) .

The new Ada has the ability to interface with other systems and programming lan-
guages like C, COBOL, and Fortran. The approach to accomplish those new features in
the interfacing was by the introduction of the new forms of access types, pragmas, and the
following new predefined language packages; (1) Interfaces as the parent package and its
children (la) Interfaces.C (handles all the interfacing with C language)
(1b)Interfaces. COBOL (handles all the interfacing with COBOL language) and (1c)
Interfaces.Fortran (handles all the interfacing with Fortran language) .

The approach to accomplish the object oriented programming features was by the
introduction of a programming by extension (tagged types), a Class wide programming (
Classes), Abstract types and Subprograms, and the Access types (access to subprograms).

The approach to improve the library facilities and the Programming in Large sys-
tems was by the introduction of the Hierarchical Libraries which are implemented by the
new language features like child packages, private children and generic children.

The Ada 95 overcomes the problems in Tasking by the introduction of the pro-
tected types. A protected type encapsulates and provides synchronized access to the pri-

vate data of objects of the type without the introduction of additional tasks.

F. OBJECTIVES
The Computer Science Department at NPS, based on the DoD's policy, has de-

creed Ada as the basic programming language moreover, Ada 95 is a modern

programming language that includes all the capabilities that users desire like object ori-
ented programming, real time capabilities, good Interfacing with other languages, so there
is an urgent need to develop a course material for instructing computer science students in
the new Ada and its new features in object oriented programming.

The primary emphasis of this thesis is the introduction of the Ada 95 and the con-
struction of a course outline which must be built to endowed the computer science's stu-
dents with the appropriate knowledge to face the future necessities in all areas of
computer science .

The research of this thesis involved with an analysis in an overall Ada 95 core lan-
guage and particularly of object oriented programming, hierarchical libraries, exceptions,
and generics features. In addition we summarize the incompatibilities between Ada 83 and
Ada 95 and we present some guidelines to Ada 83 programmers to avoid some common
errors when they use Ada 95. We proposed a course outline, material, suitable to intro-

duce the new Ada based on the computer science department's demands.

G.BACKGROUND

The first priority rule that the Naval Postgraduate School has been constituted to
accept a student to study at Computer Science Department is that the students have to
know or have experience on at least one programming language like C, Pascal, Fortran,
etc. The new course outline for a Ada 95 is constructed based on the above policy. The
students background in another programming language lead us to construct the course
outline material by assuming that the registered students for this new course have the basic
knowledge or can at least understand the common vocabulary of all programming lan-
guages like compiler, compilation, linking, types, assignment, iteration, etc. In addition,
we try to refresh the students basic knowledge / vocabulary in each step we present the
core Ada 95 language.

We used the GNAT compiler Version 1.82 for UNIX to solve the programming ex-
amples and case studies which we chose to present both in Ada 95 Highlights and the

course outline material.

H. ORGANIZATION OF THESIS

This chapter presents an introduction to new Ada 95. Chapter II of this thesis pro-
vides the main features of Ada 95 which are the object oriented programming, hierarchical
libraries, exceptions, and generics . Chapter III discuss the incompatibilities between Ada
83 and Ada 95 and gives guidelines to Ada 83 programmers how to avoid errors when
they use Ada 95 . Chapter IV presents the course outline. Chapter V presents the accom-
plishments and proposals. Appendix A presents the slides for the core Ada 95 language
material. Appendix B includes the slides for the Object Oriented Programming features of

Ada 95.

II. HIGHLIGHTS OF ADA 95

The great strength of Ada 83 is its reliability. The strong typing and related features
ensure that programs contain few surprises; most of errors are detected at compile time
and of those remaining many are detected by runtime constraints. Moreover the compile-
time checking extends across compilation unit boundaries.

However, after a number of years experience it became clear that some improve-
ments were necessary in order to completely satisfy the present and the future user's needs
from a whole variety of application areas. As a consequence, Ada 95 was constructed to
satisfy all the modern necessities of programming, like objects oriented programming ca-
pabilities, real time features, good interfacing etc. The approach was followed by the map-
ping team to implement the object oriented programming features, was a prototype idea
and different from the usual approaches that all the present object oriented programming
languages use. The new Ada was constructed without incurring the pervasive overheads
of languages such as Smalltalk or the insecurity brought by the weak C foundation in the
case of C++. Ada 95 remains a very strongly typed language but provides the prime bene-
fits of all key aspects of the Object oriented paradigm.(Barnes, 1994, pp. 398-400)

Another area with major changes in Ada 95 is the tasking model where the introduc-
tion of protected types allows a more efficient implementation of standard problems of
shared data access. This brings the benefits of speed provided by low-level primitives such
as semaphores without the risks incurred by the use of such unstructured primitives.
Moreover, the clearly data oriented view brought by protected types fits in naturally with
the general spirit of the object oriented paradigm.

Ada 95 also introduces the hierarchical library structure containing child packages
and child subprograms which solve the flat library structure that was used by Ada 83. This
approach gives the user the ability to expand a package without recompiling it.

Another area which sees considerable change in Ada 95 is the generic packages. The

generics expanded to match the object oriented facilities and the additional numeric types

which are offered by the Ada 95. In addition new Ada continues to offer the traditional
strength by implementing generics packages.

Ada 95 continues to provide the exception facilities, and introduces a new idea of
an exception occurrence that identifies both the exception and the instance of its being

raised.

A. OBJECT ORIENTED PROGRAMMING

Objected-oriented programming has become exceedingly popular in the past few
years. Compiler writers and other software producers are rushing to release object-
oriented versions of their products. Students strive to be able somehow to list " experience
in object-oriented programming" also.

What is object-oriented programming? Why is it so popular? These questions are so
popular in our days and there are many answers.

Let's answer the second question first. It is likely that the popularity of object-
oriented programming stems in part from the hope, as was the hope for many previous in-
novations in computer software development, that this new technique will be the key to
increased productivity, improved reliability, fewer cavities, and a reduction in the national
debt. Although it is true that there are many benefits to using object-oriented program-
ming techniques it is also true that programming a computer is still one of the most diffi-
cult tasks ever undertaken by human kind. (Budd, 1991, pp. 3-5)

The answer for the first question is very difficult because there are many theories
and definitions for object oriented programming. All these definitions agree to a common
truth, that object-oriented programming is not simply a few features added to program-
ming languages. Rather, it is a new way of thinking about process of decomposition prob-
lems and developing programming solutions. Moreover, the user is able to build new
abstractions from existing ones by inheriting their properties (inheritance), has the ability
to identify a type at run time and to manipulate values of several specific types (polymor-

phism), and has the strength to choose an operation at run time (late binding) .

10

Decomposition and inheritance capabilities are provided by Ada 95 through tagged
types and child library units, while polymorphism is provided by class wide types, and late
binding by dispatching in which the choice of subprogram call is made at run time depend-
ing on the type of the parameters or possibly the type of the result of the subprogram call,
late binding also occurs through a new form of access type which can reference subpro-

grams (Ada 9x Mapping / Revision Team, 1994, pp. 4-2)

1. Programming By Extension

The key idea of programming by extension is the ability to declare a new type that
refines an existing parent type by inheriting, modifying or adding to both the existing com-
ponents and the operations of the parent type. A major goal is the reuse of existing reliable
software without the need for recompilation and retesting.

Type extension in Ada 95 builds upon the existing Ada 83 concept of a derived type.
In Ada 83, a derived type inherits the operations of its parent and can add new operations;
however, it is not possible to add new components to the type. This static mechanism in
Ada 83 has changed in Ada 95 and a derived type can also be extended by adding new
components. (Ichbiah, 1992, pp. 3).

Ada 95 allows only record types to be extended on derivation provided that they are
marked as tagged. Private types implemented as records can also be tagged.

Few people are comfortable with the keyword " tagged ". The origin of the discom-
fort is to have a mechanism keyword designate a high-level abstract concept. Moreover,
most other major object-oriented languages call these entities classes (Simula, Eiffel,
C++) and the concept is known in the literature as that of class. (Ichbiah, 1992, pp. 1-2)

An example how Ada 95 implements tagged type (classes) as records.

type Officer is tagged
record
Name : String ;
Rank : Natural ;
end record ;

11

Then we can declare
type Weapon_Officer is new Officer with
record
Subordinate_Officers : Group_of Officers;
Subordinate_Enlisted : Group_of Enlisted:
Main_Responsibility_Area : Type Of Arms:
end record;

When we have already declared
type Group of Officers is array (Positive range < >) of String;
type Group_of Enlisted is array (Positive range < >) of String;
type Type_Of Arms is (Guns, Surface_Missiles, Air Missiles, Weapon_Radar);

The type Weapon_Officer has five components the Name, Rank, Subordinate_Officers. Sub-
ordinate_Enlisted, Main_Responsibility_Area. In this example the type Officer is the parent type (
called the base class or superclass in other object-oriented languages) while the type
Weapon_Officer 18 derived from Officer and is called a child type.

The following example shows a private type that can also be marked as tagged.

type Officer is tagged private;

and the full declaration must then (ultimately) be a tagged record

private

type Officer is tagged
record
Name : String ;
Rank : String ;
end record;

or the private tagged type can be declared as

private
type Weapon_Officer is new Officer with
record
Subordinate_Officers : Group_of Officers;
Subordinate_Enlisted : Group_of Enlisted;

12

Main_Responsibility_Area : Type_Of_ Arms;
end record;
Just as in Ada 83, derived types inherit the operations which " belong " to the parent
type. These are called primitive operations in Ada 95. User-written subprograms are
classed as primitive operations if they are declared in the same package specification as the

type and have the type as parameter or result.

2. Class Wide Programming

The ability to identify a type at runtime and to manipulate values of several specific
types is called polymorphism. In Ada 95 polymorphism is provided by class wide types.
We need class wide types as mean to manipulate any kind of the parent type and to proc-
ess it accordingly. (Skansholm, 1994, pp. 588)

Each tagged type T has an associated type denoted by T'Class. This type comprises
the union of all the types in the tree of derived types rooted at T. The values of T'Class are
thus the values of T and all its derived types. Moreover a value of any type derived from T
can be implicitly converted to the type T'Class.

In the case of Officer example the tree of types can be pictured as in Figure 1.

4 ™\
Officer (Parent)

Weapon_Officer (child)

Figure 1 : Tree of Types

A value of any of the Officer types can be implicitly converted to Officer'Class. The
Weapon_Officer is not the same as Officer'Class; The Officer'Class consists of the Officer
and Weapon_Officer types and their operations when the Weapon_Officer consists just of

the Weapon_Officer type and its operations.

13

Each value of a class-wide type has a tag which identifies its particular type from
other types in the tree of types at runtime. It is the existence of this tag which gives rise to
the term tagged types.

The type T'Class is treated as an unconstrained type; this is because we cannot pos-
sibly know how much space could be required by any value of a class-wide type because
the type might be extended. As a consequence, although we can declare an object of class-

wide type we must initialize it and it is then constrained by the tag.

a. Dispatching
A type T'Class can be used as a parameter of a procedure as in the follow-

ing example:

procedure Process Officer (OF : in out Officer'Class) is

begin
Handle Officer (OF);

end Process Officer;

Procedure Process Officer takes a class-wide value as its parameter. Proce-
dure Handle Officer can manipulate any kind of Officer. In this case there are two over-
loaded versions of the procedure Handle Officer, one of each type in the tree and so we
do not know which procedure Handle Officer to call until runtime because we do not
know which specific type the Officer belongs to (Weapon_Officer , or Officer). However,
OF is of a class-wide type and so its value includes a tag indicating the specific type of the
value. The choice of Handle Officer is then determined by the value of this tag; the pa-
rameter is then implicitly converted to the appropriate specific Officer type before being
passed to the appropriate procedure Handle Officer.

This runtime choice of procedure is called dispatching and is the key to the flexibility

of class-wide programming.

14

b. Class Wide Access Type

A type T'Class can have be referred by an access type. In this case the ac-
cess could designate any value of the class-wide type from time to time. The following
declaration is an example of an access type Officer_Ptr that refers to the Officer a class-
wide type :

type Officer_Ptr is access Officer'Class ;

3. Abstract Types And Subprograms

The purpose of an abstract type is to provide a common foundation upon which
useful types can be built by derivation. An abstract subprogram is a sort of place holder
for an operation to be provided(it does not have a body).

A tagged type which has one or more abstract operations is said to be an abstract
type. An abstract type on its own is of little use because we cannot declare an object of the
type.

Upon derivation from an abstract type we can provide actual subprograms for all the
abstract subprograms of the parent type. Once all the abstract subprograms are provided,
the type is then no longer abstract and we can then declare objects of the type in the usual
way. (Barnes, 1994, pp. 424)

In the example of processing Officer we could reformulate this so that the root type
Officer was just an abstract type and then build the specific types upon this. This would
enable us to program and compile all the general infrastructures routines for processing all
officers such as Process Officer procedure with out any concern at all for the individual
alerts and indeed before deciding what they should contain. The baseline package could

then simply become :

package Base_Officer_System is
type Officer is abstract tagged null record;

procedure Handle_Officer (OF : in out Officer) is abstract;

end Base Officer_System |

15

In the Base Officer System package we declare the type Officer as a tagged null re-
cord with just the procedure Handle Officer as an abstract subprogram (This package
does not have body).

We can now develop an officer infrastructure and then later add the normal officer
system containing the tree types of officers like the following example :

with Base_Officer_System
package Normal Officer System is

type Executive _Officer is new Base_Officer_System.Officer with

record
Name: String ;
rank : Natural;

end record;
procedure Handle Officer(OF : in out Executive_Officer)
type Weapon Officer is new Executive Officer with
record
Subordinate_Officers : Group_of Officers:
Subordinate Enlisted - Group_of Enlisted;
Main_Responsibility Area : Type Of Arms;
end record;
procedure Handle Officer(OF : in out Weapon_Officer);

end Normal Officer System ;

Officer
Eerutive_Ofﬁcer

Weapon_Officer

Figure 2 : New Tree Structure

4. Late Binding
The ability to choose an operation at runtime is called late binding because the

choice of operation is made late in the compile-link-run process. We mentioned

16

dispatching in Ada 95 which is one mechanism for late binding. The second mechanism is

provided by the manipulation of subprogram values through an extension of access types.
In Ada 95 an access type can refer to a subprogram; an access-to-subprogram value

can be created by the Access attribute and a subprogram can be called indirectly by

dereferencing such an access value. The following example demonstrate such a case.
type Trig_Function is access function(F : Float) return Float;
T : Trig_Function ;
X, Theta : Float;
In this example T " point to " functions such as Sin, Cos and Tan. We can assign an
appropriate access to subprogram value to T by
T := Sin'Access;
and later indirectly call the subprogram currently referred to by T as expected
X := T (Theta); (Which is really an abbreviation for X := T.all (Theta);)
The access to subprogram mechanism can be used to program general dynamic se-
lection and to pass subprograms as parameters. It allows program call-back to be imple-
mented in a natural and efficient manner. (Ada 9x Mapping / Revision Team Rationale,

1994, pp. 4- 29)

B. HIERARCHICAL LIBRARIES

There are occasions when we wish to write two logically distinct packages which
nevertheless share a private type. We could not do this in Ada 83. We either had to make
the type not private so that both packages could see it with the unfortunate consequence
that all the client packages could also see the type; this broke the abstraction. On the other
hand, if we wished to keep the abstraction, then we had to merge the two packages to-
gether and this resulted in a large monolithic package with increased recompilation costs. (
Ada 9x Mapping / Revision Team Rationale, 1994, pp. 10-1)

Another aspect of the difficulty in Ada 83 arose when we wished to extend an exist-

ing system by adding more facilities to it. If we added a package specification then

17

naturally we have to recompile it but moreover we also have to recompile all existing cli-
ents even if the additions have no impact upon them.
In Ada 95 these and other similar problems are solved by the introduction of a hier-

archical library structure containing child packages and child subprograms.

1. Child Units
The Officers process is described by the following package ;
package Process_Officer is
type Officer is private;
procedure Handle Officer (OF : in out Officer);

private
type Officer is
record
Name: String
rank : Natural;
end record;

end Process_Officer ;

In this example sometime later we want to move officers from one department to
another by using a new procedure Move Officers. In Ada 83 we could do this by adding
the Move_Officers procedure to the package Process Officer and this forced us to recom-
pile all the existing clients.

In Ada 95, however, we can add a child package as the following one:

package Process_Officer Move is

procedure Move Officers (OF1, OF2 : in out Officer) ;

end Process Officer Move ;
within the body of this package we can access the private type Officer itself.
The notation, a package having the name P.Q (Process Officer Move) is a child
package of its parent package P. We can think of the child package as being declared in-
side the declarative region of its parent but after the end of the specification of its parent;

most of the visibility rules stem from this model. The child package P.Q solves both the

18

problem of sharing a private type over several compilation units and the problem of exist-
ing a package without recompiling the clients. They thus provide another form of pro-

gramming by extension.(Barnes, 1994, pp. 432)

2. Private Child Units

The child units we introduced in the previous section were based around the provi-
sion of additional facilities for the client. The specifications of the additional packages
were all visible to the client.

In the development of large subsystems it often happens that we would like to de-
compose the system for implementation reasons but without giving any additional visibility
to clients.

Ada 83 had a problem in this area. In Ada 83 the only means at our disposal for the
decomposition of a body was a subunit. However, although a subunit could be recompiled
without affecting other subunits at the same level, any change to the top level body (
which includes the stubs of the subunits) required all subunits to be recompiled. Ada 95
also solves this problem by the provision of a form of child unit that is totally private to its
parent. The example of such a private child is

private package P.Q is

end P.Q;

The private child P.Q can be declared at any point in the child hierarchy. The visibil-
ity rules for private children are similar to those for public child but there are two extra
rules.

The first rule is that a private child is only visible within the subtree of the hierarchy
whose root is its parent. In addition within that tree it is not visible to the specifications of
any public siblings.

The second rule is that the visible part of the private child can access the private part
of its parent. This is quite safe because it cannot export information about a private type to

a client because it is not itself visible. Nor can it export information indirectly via its public

19

siblings because it is not visible to the visible parts of their specifications but only to their

private parts and bodies. (Barnes, 1994, pp. 438)

C. PROTECTED TYPES

A protected type has a distinct specification and body in a similar style to a package
or task. The specification provides the access protocol and the body the implementation
details.

The specification of a protected type is also split into a visible part and a private
part. The visible part contains specifications of subprograms and entries providing the pro-
tocol. The private part contains the hidden shared data and also the specifications of any
other subprograms and entries which are private to the type. (Ada 9x Mapping / Revision
Team Reference Manual, 1994, pp. 165)

protected Variable is
function Read return Item ;
procedure Write (New Value : Item) ;
private
Data : Item;
end Vanable ;
protected body Variable is
function Read return Item is
begin
return Data;
end Read:
procedure Write (New_Value : Item) is
begin
Data := New_Value;
end Write ;
end Variable ;
The protected object Variable provides controlled access to the private variable

Data of some type Item. The function Read enables us to read the current value whereas

the procedure Write enables us to update the value. Calls use the familiar dotted notation.

20

X := Variable Read;

Variable. Write (New Value =>Y);

Within a protected body we can have number of subprograms and the implementa-
tion is such that calls of the subprograms are mutually exclusive and thus cannot interfere
with each other. A procedure in a protected body can access the private data in an arbi-
trary manner whereas a function is only allowed read access to the private data. The im-
plementation is consequently permitted to perform the useful optimization of allowing
multiple calls of functions at the same time. (Ada 9x Mapping / Revision Team Rationale,

1994, pp. 9-4)

D. EXTENSIONS TO GENERICS

The generic facility in Ada 83 has proved very useful for developing reusable soft-
ware particularly with regard to its type parameterization capability. However, there were
a few anomalies which have been rectified in Ada 95. In addition a number of further pa-
rameter models have been added to match the object-oriented facilities and the additional
numeric types as described in previous sections.

As a simple example consider the following :
generic
type T is private;

package P is

package body P is
X: T

end P;

In Ada 83 we could instantiate this with a type such as Integer which was fine.
However, we could not instatiate this with an unconstrained type such as String because
when we came to declare the object T we found that there were no constraints and we

could not declare an object as an unconstrained array.

21

The above problem is solved in Ada 95. The parameter matching rules for the exam-
ple above no longer accept an unconstrained type such as String but require a type such as
Integer or a constrained type or a record type with default discriminants.

While we wish to write a generic package that will indeed accept an unconstrained

type we have a new form of notation as follows :
generic
type T (<) is private; or
type T is tagged private; or
type T is new S; or
type T is new S with private;
package P ...
In this case we are not allowed to declare an object of type T in the body, we can
only use T in ways which do not require a constrained type. The actual parameter can now

be any unconstrained type such as string; it could also be a constrained type. (Barnes,

1994, pp. 446)

E. EXTENSIONS TO EXCEPTIONS

In Ada 83 exceptions occur when errors or other exceptional situations arise during
program execution. An exception represents a kind of exceptional situation, an occurrence
of such a situation (at runtime) is called exception occurrence. To raise an exception is to
abandon normal program execution so as to draw attention to the fact that the corre-
sponding situation has arisen. Performing some actions in response to the arising of an ex-
ception is called handling the exception.

In Ada 95 we are allowed to mention the same exception more than once in the
same handler.

Ada 95 also provides additional facilities which enable a program to identify further
information about the cause of an exception. This is particularly useful in an other clause
where we may require to log the details of all exceptions raised.

when others =>

Put (" Something is wrong ");

22

Clean_Up;
raise;
end;

The above example cannot provide more specific diagnostic information when we
use Ada 83 without writing a handler for every exception in the program and, of course,
some of these may not be in scope anyway. Ada 95 introduces the idea of an exception oc-
currence which identifies both the exception and the instance of its being raised.

In Ada 95 Exception Occurence, Exception_Name, Exception_Message and Ex-
ception_Information are declared in the package System.Exceptions. These functions take
an exception occurrence as their single parameter and return a string.

By using the functions from the System Exceptions package we can modify the

above exception as the following :

when Event : others =>
Put (" Unexpected exception : ");
New_Line;
Put (Exception_Message (Event)),
Clean_Up;
raise;

end;

The object Event of the type Exception_Occurence acts as a sort of marker which

enables us to identify the current occurrence; its scope is the handler. Such a choice pa-

rameter can be placed in any handler. (Ada 9x Mapping / Revision Team Rationale, 1994,
pp. 11-2)

23

24

III. UPWARD INCOMPATIBILITIES

The major design goal of Ada 95 is to avoid or at least minimize the need for modi-
fying the existing base of Ada 83 software to make it compatible with Ada 95. This in-
volves not only pursuing upward compatibility but also preserving implementation
dependent behavior that can currently be relied upon.

However, there are some upward incompatibilities imply that some legal Ada 83
programs are no longer legal in Ada 95. The new Ada compiler is guaranteed to identify
and reject all such incompatible situations, safeguarding users against unrecognized
changes in program behavior. The five most common upward incompatibilities are consid-
ered likely to occur in normal programs are (Ada 9x Mapping / Revision Team Rationale,
pp- A-1):

1. New reserved words; in Ada 95, six new reserved words have been added to
the language

2. Type Wide Character has 256 positions

3. Unconstrained generic parameters; in Ada 95, different syntax must be used in a
generic formal parameter to allow unconstrained actual parameters.

4. Library package bodies illegal if not required; in Ada 95, it is illegal to provide a
body for a library package that does not require one.

5. Numeric_Error renames Constraint_Error; in Ada 95, the Numeric_Error has
been changed to a renaming of Constraint_Error.

To avoid these five incompatibilities the following guidelines for Ada 83 programs
are:
1. The Ada 83 users should not use the reserved words as identifiers:

2. They can not declare the identifiers Wide_String and Wide_Character in
package specifications.

3. Do not apply use clauses to package System.

4. Do not declare the identifier Append _File in a package specification.
Alternatively, do not apply use clauses to package Test Io and instantiations of
Sequential To.

25

5. For type Character, be prepared that the enumeration will comprise 256, rather
than 128, literals. Similarly, for type File_Mode, be prepared for the added
literal Append_File.

6. Do not use accuracy constraints in subtype declarations.
7. Put representation clauses for real types immediately after the type declaration.

8. Do not derive from a type declared in the same package. Or if you do, derive
the new types before redefining any predefined operations on the parent type.

9. Add a distinctive comment to all generic formal private types that can be
legally instantiated with unconstrained types.

10. Do not assume " too much" about the state of the computation when
exceptions are implicitly raised. Do not cause implicit exceptions knowingly. Be
prepared for the elimination of the exception Numeric_Error.

11. Be prepared for attribute values of real types to more closely reflect the actual
hardware. Be aware that accuracy requirements for operations combining
fixed-point types with differently base 'Small may be lessened. (Ploedereder,
1992, pp. 1-5)

A. UPWARD INCOMPATIBILITIES

{. Reserved Words

The following reserved words in Ada 95 are not reserved in Ada 83.

a. Abstract
There are abstract tagged types and abstract subprograms. The purpose of
abstract is to provide a common foundation upon which useful types can be built by

derivation.

b. Aliased

Aliased views are the ones that can be designated by an access value.

¢. Protected
The protected types encapsulate and provide synchronized access to the pri-

vate data of objects of the type without the introduction of an additional task.

26

d. Requeue
A requeue statement can be used to complete an accept-statement or en-
try_body (both are used to define potentially queued operations on tasks and protected

types), while redirecting the corresponding entry call to a new (or the same) entry queue.

e. Tagged
Record types can be extended to declare a new type that refines an existing
parent type by inheriting, modifying or adding to both existing components and the opera-

tions of the parent type.
f Until

2. Type Character
In Ada 95, the type Character has 256 positions while in Ada 83, it had 128 posi-
tions. As a consequence, we can define characters from other non-English languages like
Latin, German, Greek. (Skansholm, 1994, pp. 77)
Also an Ada 83 program could be an illegal Ada 95 program if it has a case state-
ment or an array indexed by Character, but it could be a legal Ada 95 program with differ-
ent semantics if it relies on the position number or value of CharacterLast. (Ada 9x

Mapping / Revision Changes from Ada 83 to Ada 9X,, pp. 11)

3. Library Package Bodies

In Ada 95, library unit packages are allowed to have a body only if required by lan-
guages rules. This avoids a nasty and not so rare error.

In Ada 83, a body need only be provided for a package that really needed one, such
as where the specification contains subprogram or task declaration. If a body was pro-
vided for a library package that did not need a body, then if the package specification was
subsequently changed, the body became obsolete. However, since it was optional, subse-
quent builds incorporating the package would not incorporate the body, unless it was

manually recompiled. This obviously affects packages, for example, that only declare

27

types, constants and/or exceptions, a very common occurrence. (Ada 9x Mapping / Revi-
sion Team Rationale, 1994, pp. A-3)
The solution adopted in Ada 95 is to allow a body for a library unit package only

when one is required by some language rule.

4. Indefinite Generic Parameters

In Ada 95, additional syntax is needed to indicate that a generic actual type is al-
lowed to be indefinite. Otherwise, the actual must be definite.

In Ada 83, no indication was given in a generic formal type declaration as to whether
the actual needed to be definite, for example because the body declared an uninitialized
variable for the type. It was thus possible for a legal instantiation to become illegal if the
body was changed.

An Ada 83 program, where an indefinite type is used as a generic actual parameter is

an illegal Ada 95 program.

5. Numeric Error
In Ada 95, the exception Numeric_Error is declared in the package Standard as a re-
naming of Constraint_Error. The checks that could cause Numeric_Error to be raised in

Ada 83 have been reworded to cause Constraint_Error to be raised instead.
B. GUIDELINES FOR ADA 83 PROGRAMS

1. Do Not Use The Reserved Words

These reserved keywords have been added to Ada 95. Clearly, programs containing
such identifiers will be rejected as syntactically illegal by Ada 95 compiler.

The following declarations show such incompatibilities.

Protected : Boolean = True ;

procedure Requeune (The_Activity : Activity; On_Queue : Queue) ;

These declarations are legal in Ada 83 but illegal in Ada 95 because 'protected ' and '
requeue’ are reserved words. Detection of that incompatibility is straightforward but auto-

matic correction is problematic; to ensure that name change is valid requires significant

28

analysis especially if the identifier is the name of a library unit, or occurs in a package

specification for which use clauses occur.

2. Do Not Declare The Identifiers Wide_String, Wide_Character

Do not declare the identifiers Wide_String and Wide_Character in package specifi-
cations because these identifiers have been added to package Standard of Ada 95. As a
consequence, user-defined names with the same identifier, when made directly visible via
use-clauses, will no longer denote the imported definitions but those in package Standard.
The rules of Ada give precedence to directly visible names over names made directly visi-
ble by use-clauses. Theoretically, the program will still be legal, but will behave differently
in execution. In practice, however, it is likely that program illegalities will occur as a con-
sequence of the altered binding. For example the declaration

Str : Wide_String
in Ada 83 denotes PKG.Wide String while in Ada 95 denotes the package
Standard Wide_String.

A secondary consequence of the appearance of the new types Wide_Character and
Wide String for the support of international character sets is that operations involving
only character or string literals may become ambiguous, since the operation could be for
either the Ada 83 types or the new Ada 95 types. For example, the equalities in

if'a'="b' then . ..

if "abc" = "def" then . . .
are now ambiguous. The same applies if the operands are overloaded function calls that
cannot be disambiguated by their parameters. Given that no competent programmer would
compare two string or character literals, this situation is not worth a guideline. However,
preprocessors might generate such code. The solution is to type-qualify one of the argu-
ments of the expression. The appearance of a variable anywhere in the expression avoids

the ambiguity.

29

3. Do Not Apply Use-Clauses To Package System

This is generally a good Ada 83 guideline since implementors are free to add addi-
tional declarations to package System. Consequently, a new release of a compiler may de-
clare new names in the package, causing visibility conflicts or ambiguities in code that
already makes equally named declarations from other packages directly visible via use-
clauses. In Ada 95 adds additional predefined names in package System, and hence can
cause this problem. Unlike the situation discussed in the previous paragraph, encountering
this incompatibility will make the Ada 83 program illegal in Ada 95, since the Ada visibil-
ity rules will then make the conflicting, non overloadable declarations from neither pack-

age directly visible.

4. Do Not Declare The Identifier Append_File
Ada 95 adds the enumeration literal Append File to the File_ Mode type in these
packages. As an additional name in a predefined package, this can create the problems al-
ready described under the previous guideline. Alternatively, do not apply use clauses to

package Text_Io and instantiations of Sequential Io.

S. Enumeration Type Incompatibilities

For type character, be prepared that enumeration will comprise 256 rather than 128,
literals. Similarly, for type File_Mode be prepared for added literal Append_File.

These changes have two major consequences :

The "Last attribute applied to type Character (or any of its derived types) will yield
a value with an encoding of 255 rather than 127. The example

if ASCILDEL = Character'Last then

is always true in Ada 83 but false in Ada 95. Similarly File_Mode'Last will now yield
Append_File. Whether or not this impacts an algorithm depends entirely on the program-
mer's assumptions. If the assumption was to obtain truly the last character in the enumera-
tion, regardless of its encoding, the code will still operate as intended. If the specific value
is important, the explicit literal (or a declared constant) should be used instead of the at-

tribute. An analogous reasoning applies to the 'Range attribute applied to arrays with such

30

index types or to any implicit assumptions about the magnitude of the enumeration. The
following example shows how Ada 83 code will not be upward compatible.

The loop will result in a Constraint_Error in Ada 95, beside being poor style in Ada 83.

for CHR in Character'First .. Character’Last loop
BAD_ TT(Character'Pos(CHR)) :=.. .
end loop;

Case statements over expressions of such types need to account for the possible
choices added by Ada 95. Otherwise, the statements will be illegal in Ada 95. Since super-
fluous others or an empty range choice is legal in Ada, case statements, whose choices do
not already cover all values permitted by Ada 95 should be written with such an added
choice. Alternatively, one can also qualify the case expression with a static subtype, re-
flecting the Ada 83 range of types Character and File_Mode respectively. The following
example illustrates this situation.

case CHAR is

when Character'Val (0) .. Character'Val(63)
= ..
when Character'Val (64) .. Character'Val(127)
= .
end case;
This case statement is illegal in Ada 95 since not all choices are covered (from 1 to
256). A solution in Ada 95 is by using the form
when others => null;
Hence the correct case statement will be :
case CHAR is

when Character'Val (0) .. Character'Val(63)
=>_ ..
when Character'Val (64) .. Character'Val(127)

=>...

31

when others => null;

end case;

6. Do Not Use Accuracy Constraints In Subtype Declarations
Accuracy constraints in subtype declarations will be removed from the language. It is
surmised that all existing Ada implementations simply ignore such subtype constraints any-
how, computing and storing results in the accuracy of the respective type.
In existing programs, such accuracy constraints should be removed. They can be
found via editor scripts or syntactic searches. The following example

type VOLT is delta 0.125 range 0.0 .. 255.0;
subtype ROGH_VOLTAGE is VOLT delta 1.0 range 0.0 .. 100.0;
should be replaced with

type VOLT is delta 0.125 range 0.0 .. 255.0;
subtype ROGH VOLTAGE is VOLT range 0.0 .. 100.0;

7. Representation Clauses For Real Types
Ada 95 solves an obscure problem in Ada 83 by mandating that such representation
clauses be given before any subtypes or derived types of the given type are declared.
In existing the programs, once the situation is identified, the correction is very sim-
ple, merely move the representation clause to precede the subtype or derived type

declarations.

8. Derived Types

Do not derive from a type declared in the same package or if you do, derive the new
types before redefining any predefined operations on the parent type. In Ada 83, subpro-
| grams become derivable only at the end of the visible part of the package in which the type
is declared. In Ada 95, they are immediately derivable. As shown in the following
| example,
‘ package Derivations is

type Byte is array (0..7) of Boolean;

function "and" (L, R : Byte) return Byte; -- redefine "and" for whatever reason

32

type CHAR is new Biyte;

-- In Ada 83, this type inherits the predefined "and"

-- In Ada 95, this type inherits the redefined "and" of Byte
a sequence of declarations, interspersing redefinition's of predefined operations with de-
rived type declarations yields different definitions of these operations for the derived type.
The guideline avoids this situation, which has surprised many first-time Ada users.

In existing programs, these situations can best be identified by searching for redefini-

tions of predefined operations, which should be relatively rare, and inspecting the context
of these redefinitions for subsequent derived type declarations. If such situations are

found, a simple recording of the declarations makes the programs upward compatible.

9. Generic Formal Private Types

Add a distinctive comment to all general formal private types that can be legally in-
stantiated with unconstrained types. In Ada 83, the instantiations of a generic with an un-
constrained type can be illegal, depending on the use of the type in the generic unit, e.g., in
an object declaration. In Ada 95, this instantiation will always be illegal, unless the formal
type is identified as one that can be instantiated with an unconstrained type (in which
case, the instantiation will always be legal and the generic must not contain conflicting
uses of the type). Ada 95 uses the box notation (<>) for this purpose. The example
shows this situation.

generic

type X is private; -- Ada 95 : add (<>)

procedure Ada_83;

type Short_String is new String (1..8);

procedure Good_One is new Ada_83 (Short_String);

procedure Dubious_One is new Ada_83 (String); -- (1)

-- may be illegal; in Ada 83, depending on generic body of Ada_83. It will always be

-- illegal in Ada 95

generic

33

type X (<) is private; -- Ada 95 notation; illegal in Ada 83

procedure Ada 94;

procedure Better One is new Ada_94 (String); -- always legal

The legality of the instantiation (1) in the above example will depend on the use of
type X in the body of 'Ada_83". This is the single instance where Ada 83 code cannot be
written to be upward compatible with Ada 95. Consequently, we recommend the use of a
distinctive commernt convention, 2s shown at the beginning of the example, so that upon
transition to Ada 95, the necessary source changes are easily located and made.

For existing programs, there is a mechanical method of establishing whether or not
such a comment should be added: identify all generic units with formal private types and
instantiate them with unconstrained types. All such instantiations not rejected by the Ada
83 compilation system (possibly at link time) are candidates to be commented as

indicated.

10.Implicit Exceptions

Do not assume "Too Much" about the state of the computation when exceptions are
implicitly raised. Do not cause implicit exceptions knowingly. Be prepared for the elimina-
tion of the exception Numeric_Error. Software engineers generally agree that knowingly
utilizing implicitly raised exceptions as a control flow mechanism is a highly dubious prac-
tice. The interpretation of Ada 83 regarding the execution order in the presence of implic-
itly raised exceptions is far from clear. Efficient support of RISC, pipelined, super-scalar,
and massively parallel architectures makes it necessary to deviate from a purely sequential
execution model. Ada 95 is likely to better codify permission for such support in
compilers.

Consequently, users should not rely in their algorithms on the specific point in the
sequential execution order where an implicit exception may get raised. A good, although
over-conservative, guideline is to assume that, in any exception frame, the raising of im-
plicit exceptions may occur as early as the beginning of the frame or as late as the end of

the frame, regardless of where the exception occurs in the sequential execution order.

34

This guideline already applies to Ada 83 code, regardless of Ada 95. Yet, it will
avoid additional surprises when upgrading the code to Ada 95.

In some situations, where Ada 83 mandates the raising of Constraint_Error, the se-
mantics of Ada 95 will cause the "expected" result, rather than an exception. Since all
these cases are at fringes of the language usage, and since programmers should not cause
Constraint_Error intentionally, they are not worth a guideline.

Ada 95 is very likely to eliminate the exception Numeric_Error from the language
definition. An official Ada 83 interpretation advises nonbindingly, that Ada 83 implemen-

tations should use Constraint_Error instead of Numeric_Error.

11. Attribute Values Of Real Types

Be prepared for attribute values of real types to more closely reflect the actual type
representation. Be aware that accuracy requirements for operations combining fixed-point
type with differently base "Small May Be Lessened". For the casual user of real types,
these language changes are most unlikely to have any impact. In particular, users of the
predefined floating-point types should have no problems in upgrading to Ada 95. For nu-
meric applications that parameterize algorithms by means of real type attributes, however,
the changes to attribute values may have some effect, albeit a positive one, since such ap-
plications are presumably interested in more accurate attribute values. (For example, it is
proposed that the attribute 'SMALL return the actual smallest representation increment,
rather than the increment between model numbers). Such code is typically written by nu-
merical analysts who, as a group, have requested these changes be made to Ada 83.

The reduced accuracy requirements for operations combining fixed-point types with
differently based scales is unlikely to have any significant impact because such operations
are exceedingly rare. Also, many Ada 83 compilers support only binary and decimal
'Smalls, thereby making it rather unlikely that existing code applies such operations; they

rely on the accuracy required in Ada 83.

35

36

IV. COURSE OUTLINE
A. WHY USE ADA 95 AS THE BASIC PROGRAMMING LANGUAGE

1. Modern Programming Language

We mentioned in previous chapters the Ada 95 strong capabilities like, object
oriented design, modularity, information hiding, large scale programming, interfacing to
other systems. The above features are considered indispensable by modern software
engineering and provide expressive power, maturity, and softwarebase. In addition, Ada is
superior to other general programming languages (C++, Pascal, Eiffel) in terms of
embedded, real-time, and security features. The comparison of programming languages is
in part a subjective affair; judgments are influenced by personal stylistic choices, by
familiarity, by well known first-language effect, etc. and it is not the scope of this thesis
but it is trivial that " anything you can do in any modern programming language, you can

do in Ada 95 as well".

2. Department Of Navy Policy

The policy implemented by the Department of Navy requires the use of the
programming language Ada in the development or maintenance of the software systems.
The Naval Postgraduate School as the high level education source must provide the
Officers both the knowledge and the training which will be used in the future to help the
Navy growth and expand in many scientific areas. Since all the software systems which are
used today by the Navy and general by the DoD are written by using Ada as programming
language, it is obvious that the Ada must be taught as the basic programming language by
Computer Science Department. (SECNAV INSTRUCTION 5234 2A, Apnl 1994)

B. COURSE CONSTRUCTION

In this section we describe the design and development of new course material for
the new Ada. For the reasons we mentioned above Ada 95 will be the basic general
programming language for Computer Science Department and thus it expresses the

continuation of the traditional Structure Programming with Ada or CS 2970 course.

37

Furthermore, we decide, by taking in to account the computer science students
background, that it is compulsory to start teaching first the core Ada 95 language and later
the recently improvements, like the object oriented programming features. We are guided
to this decision about the course material structure because it is tremendously difficult for
the students to understand the new object oriented programming features of Ada 95 like
Programming by Extension, Class-Wide Programming, Abstractions, etc. without having
in advance experience on the core language's capabilities like record types, tagged records,
abstract types, packages, access types, exceptions, generic packages, etc.

The above reasons lead us to divide the new Ada course material in two parts; (1)
the core Ada 95 programming language and (2) the object oriented programming with
Ada 95. The sources that provided us the information to build this new course material are
the following :

1. Ada 9x Project Office (access by anonymous ftp from address
ajpo.sei.cmu.edu)

GNAT compiler (access by anonymous ftp from address cs.nyu.edu)
Ada 9x Reference Manual.
Ada 9x Rationale.

T I

Ada Problem Solving and Program Design written by Michael B. Feldman &
Elliot B. Koffman.

6. Programming in Ada Plus an Overview of Ada 9x written by J.G.P. Barnes.
7. Ada from the Beginning second edition(1994) written by Jan Skansholm.

1. Core Ada 95 Language

In the core language material part we make an introduction to the programming
languages and a short history of Ada and we continue by representing the features of new
Ada like the Lexical Elements (Identifiers, Numeric Literal, Character Literal, String
Literal), Declaration and Types (types, subtypes, scalar types, record types, array types,
access types), Expressions, Statements (Assignment, if, case, loop, block, exit

statements), Subprograms (procedures, functions), packages (package specification,

38

package body, generic packages), Exceptions and we finish with a short presentation of
the Abstract Data Types (ADT).

The whole course material constructed based on students background, from which
we assumed that every student must have experience on at least one other programming
language like C, Pascal, Fortran, etc. This core language part was scheduled to last until
the ninth week in the quarter, and will contain the first Midterm Exam.

To present each of the core Ada's 95 semantics we constructed the slides which

are represented in Appendix A.

2. Object Oriented Programming

In the second part we present the Ada's 95 object oriented approach which is
accomplished by Programming by Extension, Class Wide Programming, Abstract Types
and Subprograms, moreover we present the new features which are offered by new Ada
like Discriminants, Operations of Tagged types, Access Types, Hierarchical Libraries,
Exceptions and Generic packages.

This second part is scheduled to instruct from ninth to eleventh week in the quarter
and will contain the second Midterm Exam.

As in the core language part we built for each semantic of object oriented

programming slides which are represented in Appendix B.

39

40

V. CONCLUSION

A. ACCOMPLISHMENTS

Ada has been designated by the Department of Defense as the mandated language
for all the DoD software development. Furthermore, its user base has expanded to include
all major defense agencies of the Western world, and increasingly many areas in civil and
private sectors. After six years of use and many implementations, the DoD made a
decision to undertake a revision to Ada. In 1995, the new Ada or Ada 95(Ada 9x) as

named was underway and is a natural extension to the original design of Ada .

1. An Overview Of Ada 95 Language

We demonstrated the critical changes of the new Ada by representing the new
Object Oriented programming capabilities, Hierarchical Library features, Tasking
enhancements, and the new features in Generics packages, Extensions. This introduction
to the new Ada facilities presents the near perfect compatibility between Ada 83 and Ada
95. The compatibility which derived from DoD's requirement document, was
accomplished in essence by the establishment of a new record type named tagged. In

addition, all the other new features are produced based on those tagged record types.

2. Incompatibilities

Although Ada 95 is compatible to Ada 83 there is a small number of
incompatibilities which have been adopted. The new reserved words, the 256 type
character's positions, unconstrained generic parameters, library package bodies, and
Numeric_Error renames Constraint_Error are incompatibilities that are considered likely
to occur in normal programs. These few incompatibilities can be dealt with in a simple

mechanical way.

3. Guidelines To Ada 95 Programmers
The few incompatibilities between the revised Ada and Ada 83 arise from language
changes to correct Ada 83 problems. Some of the incompatibilities are so specialized that

the probability of there occurrence is minimal. We presented some guidelines that refer to

41

all the known incompatibilities, and thus providing Ada 83 code that will be compatible
with Ada 9x.

4. Course Outline For The Core Language

We built a course outline for the core Ada 95 language based on the Computer
Science Department's needs and students background. The way to construct a course
outline was by presenting the new Ada's terminology, definitions, and examples for each of
the core language's features. At the end of each section we built case studies which we
strongly believe that make the student to understand easier the material that had already

instructed.

5. Course Outline For The Object Oriented Programming With Ada 95

Since, the object oriented programming facilities is a new programming style and
moreover, presents the main difference between the Ada 95 and Ada 83 we decided to
built a separate course outline for these object oriented programming capabilities. The

construction of this material was based on the philosophy followed in the core language.
B. RECOMMENDATIONS

1. Ada 95 The Basic General Programming Language For Computer Science

Department

Ada 95 contains all the capabilities like object oriented design, modularity,
interfacing with other systems, information hiding, programming in large, etc. which are
offered by the modern programming languages. Moreover, the DoD policy requires the
use of Ada as a general programming language for all software systems. The analysis of
the above features and rules, shows the necessity to teach Ada 95 as a basic programming

language for Computer Science Department.

2. Structured Programming With Ada 95
We propose the new course to continue having, the same course number CS-2970
and title Structured Programming with Ada 95 for historical reasons. Moreover, the

proposed schedule for this course is divided into two parts, the first part will cover the

42

core Ada 95 language, as well as it will be taught up to the ninth week, and the second
part ,presents the object oriented programming with Ada 95 and it will be instructed to the

last three weeks.

3. Textbook
Since the last face of Ada's 95 standardization process has not been competed,
few textbooks have been published about Ada 95. The small domain of the published
textbooks limit the reference material for students. At this time we propose Programming
in Ada plus An Overview Of Ada 9X , a textbook written by J .G.P. Barnes in 1994, which
was the appropriate textbook from the already published because it refers extensively to
the Ada 95 features and particularly in the object oriented programming facilities. It is

hoped this thesis will be a supplementary text for the near future.

4. Future Work

The Ada 95 language has not approved yet as an ANSI/ISO standard and thus the
research field on this language is huge. There are many research topics in Ada 95 and also
a lot of comparison topics between Ada 95 and general programming languages that are
implemented today, about the capabilities, effectiveness, feasibility, for the new Ada. For
the near future the research on Ada 95 can focus to the new advance course establishment
and the comparison between Ada 95 and C++ which is the most implemented general

programming language in the market.

a. Advanced Ada 95 Course
The construction of a new advance Ada 95 course in which the students
will have the opportunity to learn the advance object oriented programming, and tasking

facilities with the Ada 95.

b. Comparison Ada 95 And C++
Since C++ is another modern programming language with the same

capabilities with Ada 95, it will be a good thesis topic to contrast C++ and Ada 95 .

43

44

APPENDIX A
CS 2970 Viewgraphs

T
O ——— 1\

Computer Science Department

Naval Postgraduate School
Monterey, CA 93943

45

CS 2970- Structured Programming in Ada

> Objective : Students completing CS 2970 will be able to discern the
functionality of Ada software, develop software from a detailed functional
description and employ the features of a subset of the language effectively.

> Assumptions: Students have had no systematic introduction to
programming.

Students have interest in programming (at least, to use as problem-solving tool).

> Course Contents: Introduction to computers and programming
Reading programs
Problem solving for computer implementation

Ada language elements

> Course Grading :
2 Midterm Exams- 25% each
5 projects - successfully completed

Expect to work hard

| > Text:

|

| Programming in Ada Plus an Overview of Ada 9x J.G.P. Barnes 1994
|

|

\

46

The Criticality of Software

Hardware is no longer the dominant factor in the hardware / software relationship.
The demand for software is rising exponentially.

The cost of software is rising exponentially.

Software maintenance is the dominant software activity.

Systems are getting more complex.

Life and property are dependent on software.

Program
PROGRAM n. A logically arranged set of programming statements (or
instructions) defining the operations to be performed by a computer in order to achieve
the desired results. tr.v. To write a program in order to solve a problem or to control the

operation of a computer.

PROGRAM n. A magic spell cast over a computer allowing it to turn one's
input into error messages. tr.v. To engage in a pastime similar to banging one's head

against a wall, but with fewer opportunities for reward.

47

Language Generartions

Zero Generation : (1940 - 1954)
Machine languages, Assemply languages

Instructions and Data

First Generation : (1954 - 1958)
FORTRAN-I, ALGOL - 58, IPL V
Second Generation : (1959 - 1961)
FORTRAN-II, ALGOL - 60, COBOL, LISP, C (later)
Data

Subprograms

48

Third Generation : (1962 - 1970)
PL/I, ALGOL - 68, Pascal, SIMULA, JOVIAL
Data

Subprograms

49

Generation Gap : (1970-7)
Modula, C++, Ada

P
C B ' Subprogram -
—n/{ 3]
— Task /I
=R
—
11 < .

Package
Package

50

Why Ada?

From 1968-1973, DoD software costs increased 51%
> 450 general purpose languages for DoD systems

> 500 - 1500 language processors

> Rapidly escalating training and maintenance costs

56% of costs were for embedded computer software
> Large (1,000 - 1,000,000 SLOC)

> Long-lived (10 - 15 year life-span)

Continuous change

> Subject to physical constraints

> Reliability critical in fault prone environment

HOLWG founded

> DoD, representatives from other agencies, liaisons from UK, West Germany,

France.
> Develop requirements for languages.
> Evaluate existing languages against requirements.

> Recommend minimal set of languages.

51

Why Ada 95 ?

Ada 83 had not the capabilities to be implemented on :
> Large-scale information systems

> Distributed systems

> Large scientific computation

> Systems programming

> Object Oriented Design

Ada 95 contains all the features to construct complex systems as the above.

52

Language Requirements Series

Circulate to DoD, Federal Agencies, Industry, Academia, Europe
> 85 DoD organizations (principal author at IDA)

> 26 Industrial contractors

> 16 Academic institutions

> 7 other organizations

April 1975- STRAWMAN

August 1975- WOODMAN

January 1976- TINMAN

> Basis for DoD Directive 5000.29, mandating only DoD- approved languages in
defense systems.

> Basis for evaluation of existing languages.

> Result: No single existing language suitable for DoD embedded computer
systems.

January 1977- IRONMAN
> Reformat and correction of TINMAN
> Basis for RFP of DoD Common High-order Language (then called DoD-1).

> Four contractors selected to develop language designs (Blue/ Yellow/ Red/
Green).

June 1978- STEELMAN

> Green contractor (Honeywell/ Bull) won design.

> Result language retitled ada

53

Augusta Ada Byron

Augusta Ada Byron, the Countess of Lovelace daughter of Lord Byron, the poet (
1815 - 1852).

The countess was a mathematician and is credited as the world's first programmer
in light of her work with Charles Babbage and his Difference and Analytic Engines.

April 1988

DoD initiated a revision of ANSUMIL-STD 1851A (Ada 83).

December 1990

Requirement document underway.

January 1991
Process of Mapping .

January 1993
First phase approval as an ANSI/ISO standard

March 1994

First step of the second phase approval .

1995
Second phase as an ANSI/ISO standard

54

Ada Program Structure
with Package;
use Package;
procedure Program_Name is
declarations -- defines logical entities to be used in this program
begin
Statement 1,
Statement 2;

Statement 3,

Statement N;

end Program_Name,

A First Ada Program
-- CS 2970 Example Program 1
-- This is a short program that prints a one-line fixed message consisting of
-- Hello there We hope you enjoy studying Ada 94.
-- You have to name your file hello.ads (or hello.adb)
with Text IO,
use Text 10,
procedure hello is
begin
Put (Item => "Hello there "),
Put (Item => "We hope you enjoy studying Ada 94:);
end hello;

55

EDITOR

SOURCE
CODE

IBRARY
OBJECT
CODE

BINDER

56

.

COMPILER
OBJECT
FILE
Oor.OBJ
ADA
LIBRARY
INFO

ERROR
LISTING

EXECUT
ABLE
FILE

b_(Program Name).c

Errors

> Syntax

Rules of the language have been broken

> Environment

Assumptions of the support system are not met.

> Logic

Algorithm is incorrect.

English Examples :

The monkey ate the banana

monkey ate banana

The monkey ate 5 tons of bananas that day.
The banana ate the monkey.

Ada Examples: (First statement, previous page)
Put("Hello there."),

Put(Hello there.),

Fut("Hello there.");

Put("Hell here"),

Second Example

-- CS 2970 Example Program 2
-- This is a short program that uses variables

-- You have to name your file HelloInitials.ads (or HelloInitials.adb)

with Text 10;
procedure HelloInitials is
Initiall : Character;
Initial2 : Character;
begin
Text_10.Put (Item => "Enter your two initials> "),
Text_10.Get (Item => Initiall);
Text_10.Get (Item => Initial2);
Text_10.New_Line;
Text_10.Put (Item => "Well "),
Text 10.Put (Item => Initiall);,
Text 10.Put (Item => Initial2);
Text 10 Put (Item =>". We hope you enjoy studying Ada!"),
Text 10.New_Line;

end Hellolnitials;

58

Design Process

1.

N ok WwN

State the problem clearly as a series of steps.

Describe the input and output of each step.

Work a sample problem by hand.

Develop an algorithm* to solve the problem.

Test the algorithm with a variety of data. Check extreme cases.
Express the algorithm as a program in programming language.

Compile and run the program on the computer.

Biggest Time Waster in past classes:

Starting at step 6

*Algorithm

* Description of how a particular problem should be solved.

Top-down design

1.
2.
3.
4.

Divide a problem into subproblems.
Solve the subproblems individually.
Divide the subproblems into further subproblems.

Continue in this way until all the subproblems are easily solvable.

Ada Names (Identifiers)

> Consists of a letter possibly followed by one or more letters or digits with
embedded isolated underlines.

2not_Correct_

> All the characters which are interpreted as letters in the ISO standard can be
used. Case of the letters does not change the meaning.

» Ada does rot impose any limit on the number of characters.
> Use meaningful names TimeOfDay not T.

> Cannot use any of the 69 reserved words.

» Avoid using standard identifiers (character, integer).
Examples:

Count,

X or (x),

Get_Symbol,

X1 or (x1),

Snob_4,

Strafe,

\
CITTA

60

Reserved Words

abort else new return
abs elsif not reverse
abstract end null
accept entry select
access exception separate
aliased exit of subtype
all or
and for others tagged
array function out task
at terminate

generic package then
begin goto pragma type
body private

if procedure
case in protected until
constant is use

raise

declare range when
delay limited record while
delta loop rem with
digits renames
do mod reque xor

61

Ada Values (Literals)

An alphanumeric value defined as a constant in a program.

> Universal Integer :

12 0 1IE6 -17

» Universal Real :

120 00 0456 -325

> Character :

|Al la! lZl 15! IOI IE’

> String :

"Hello" "Press the key"

123_456

3.14158 26 1.34E-12 1.0E+6

HAH " u oy

"First part of a sequence of character” & "that continues on the text"

"the letter '?' is strange"

> Enumeration

True False Sat Green LCDR

62

Ada Data Objects

> A program manipulates data objects.

> An object represents something that occurs in the real word.

> Objects with different properties have different types.

TYPES characterized by:

> Values that can be taken by objects of the type.

> Operations that can be carried out on objects of the type.

63

Declarations with Standard Types

Numberl

Number2, Number3

Class Number

Answer

Cost,

Sales Tax,

Total Amount

Initiall

Name

New_Name

Found

- Integer;

: Natural,

: Float;

: Float;

. Character;

- Boolean;

. constant Integer

. String(1..15);

64

=2970;

: String:="David";

Input and Output of Numbers
-- /O procedures for standard numbers
-- Precompiled instantiations of Integer_Io and

-- Float_Io for the predefined Integer and Float types

with Text 10;
package My Int IO is new Text_IO.Integer_10 (Ntim => Integer),

package My Flt 10 is new Text_IO.Integer_IO (Num => Float);

65

Number Input/Output Example

-- CS 2970 example 3

-- A small example of input and output of float values in Ada

with Text_ 1O,

with My Fit 10,

procedure InchToCM s
CM_Per_Inch : constant Float := 2.54;
Inches : Float;
Centimeters : Float;

begin
Text 10 Put (Item => "Enter a length in inches> "),
My Flt 10.Get (Item => Inches);
Centimeters := CM_Per_Inch * Inches;
Text 10.Put (Item => "That equals ");
My Flt 10.Put (Item => Centimeters);
Text_10.Put (Item => " centimeters"),
Text 10.New Line;

end InchToCM;

66

Assignment and Expressions

Assignment :
Variable ;= Expression;
Type of variable and expression must be identical
A:=5; -- valid if A is declared Integer or Natural
A:=5.0; -- valid only if A is declared float
A:="Ada"; -- valid only if A is declared String (1..3) or (e.g. String(7..10))

Expression
Literal values (5,3.2, -1, 'a', " Cat", 'Z', "StraBe")
Attribute values (discussed later)

Operators and values

How it works
The value of the Expression on the right-hand side is evaluated first.
This value is placed in the Variable (which appears on the left-hand side)
The previous values of the variable are destroyed.

The Variable gets the new value from the Expression

67

Operators

Precedence of Operators

Parentheses can be used to determine precedence;

otherwise, operators are evaluated as follows

1. ** abs not

An explicit declaration of an operator

2
3
4.
5
6

*

+
&

/ mod rem

+ -

/= < <= > >= in notin

~and or xor andthen orelse

68

-- highest precedence

--(multiplying operators)
-- (‘unary)

-- (binary adding)

-- (relational operators)

-- (logical operators)

= is permitted for all types.

Case Study : Value of a Coin Collection

Problem

A child has been saving nickels and pennies for quite a while. Because she is
getting tired of lugging her piggy bank with her whenever she goes to the store, she would
like to trade in her collection for dollar bills and some change. In order to do this, she

would like to know the value of her coin collection in dollars and cents.

Analysis

To solve this problem, we must be given the count of nickels and the count of
pennies in the collection. The first step is to determine the total value of the collection in
cents. Once we have this figure, we can do an integer division using 100 as the divisor to
get the dollar value; the remainder of this division will be the loose change that she should
receive. In the data requirements, we list the total value cents (TotalCents) as a program
variable because it is needed as part of the computation process; it is not a required

problem output.

69

Data Requirements

Problem inputs :

Nickels : Natural (the number of nickels)

Pennies : Natural (the number of pennies)

Problem outputs :

Dollars : Natural (the number of dollars she should receive)

Change : Natural (the loose change she should receive)

Additional program Variables

TotalCents : Natural (the total number of cents)

Relevant Formulas

One nickel equals five pennies.

70

Design

Initial Algorithm

1. Read in the count of nickels and pennies.
2. Compute the total value in cents.

3. Find the value in dollars and loose change.

4. Display the value in dollars and loose change.

Step 2 Refinement

2.1. TotalCents is 5 times Nickels plus Pennies.
Step 3 Refinement

3.1. Dollars is the integer quotient of TotalCents and 100.
3.2. Change is the integer remainder of TotalCents and 100.

71

Ada Source Code
-- CS2970 Case Study 1 (T. Shimeall)
-- Program to convert pennies and nickels to dollars and cents

-- Program last modified Oct 1994

with Text 10;
use Text 10;

procedure PiggyBank is
Pennies, Nickels : Natural;
Dollars, Cents : Natural;

TotalCents : Natural;

package My Nat 10 is new Integer 10 (Num => Natural);

begin

-- 1 Read in count of Pennies and Nickels
Put(Item => "Enter number of pennies "),
My Nat_I0.Get(Item => pennies);
Put(Item => "enter number of nickels ");

My Nat_10.Get (Item => Nickels);

--2 Compute total value in cents

TotalCents := 5 * Nickels + Pennies;

--3 Find the value in dollars and loose change

72

--3.1 Dollars is the integer quotient of TotalCents and 100
Dollars := TotalCents / 100;

--3.2 Cents is the integer remainder of TotalCents and 100

Cents ;= TotalCents rem 100 ;

--4 Display the value in dollars and loose change
Put(item => "That works out to "),
My Nat_IO.Put(Item => Dollars)
Put(Item => "dollars and "),
My Nat_10.Put(Item => Cents),
Put(Item => " cents "),
New Line,

end PiggyBank;

73

Ada Problem Solving

1. Problem

What is the problem you are required to solve?

2. Analysis
Determine what you are asked to do.

Divide and conquer!

3. Data Requirements and Formulas
What are the required inputs?
What are the required outputs?

What are the formulas or relationships?

4. Design

Use a stepwise refinement process.

Develop initial algorithm as a series of verbal steps
Refine each verbal step.

Repeat this process until you can put it in Ada.

5. Implementation

Write the algorithm in Ada code.

74

Program Reading

Most programming is modifying existing code
> COTS/GOTS
> Reuse libraries

> Maintenance

Need to be able to read a program for understanding
> Error detection/correction (debugging)
> Design a modification

> Review for acceptability / delivery

Reading strategies
> Top-down
> Bottom-up

> Sandwich (mix of top-down & bottom-up)

75

Reading Example

-- CS 2970 Bad example 1 (T. Shimeall)

-- The following was written by a "clever" programmer and is hard
-- to read and prone to mistakes. DON'T use this sort of style if

-- you want a decent grade in CS 1970

-- Program last modified Oct 1994.

with Text 10;
use Text IO,

procedure S is

A, B : Integer;
package I is new Integer 10(Num => Integer);
begin
Put(Item => " Enter two integers "),
I.Get(Item => A),
I.Get(Item => B);,
New_Line'
A=A+B;
B=A-B,;
A:=A-B;
Put(Item =>"1get "),
1.Put(Item => B);
Put(Item => "and"),
L.Put(Item => A),
New _Line;
end S;

76

Types revisited

The real world is filled with various sorts of objects

> Integers (positive and negative 0 -Ex. account levels
> Natural numbers - Ex. counts

> Fractional numbers - Ex. lengths

> Strings - Ex. proper nouns

> Enumerated values - Ex. military ranks

> etc.

Legal operations on one sort aren't legal on other sorts :
5-3=2
CDR - LCDR =?

Ada types allow program variables to reflect to sort of objects that they represent

Ada standard environment provides a number of generally useful types :

Integer, Natural, float, String, Wide_String, Character, Wide Character

Ada allows programmers to declare their own types (called enumeration)
Placing limits on existing types

Creating entirely new types
The type declaration is in fact two things

1. An anonymous type is declared and
2. A subtype with the type name of this anonymous type is declared

77

Adding Limits on Existing Types

For integers, can limit range of values :
> hours, ranging from 0 to 23
> days, ranging from 1 to 31

> efc

Declaration
subtype hours is integer range 0 .. 23;

subtype days is Integer range 1 .. 31,

For floats, can limit both range and precision:
> Non-negative floats (lengths, etc.)

> Manage significant digits in calculations
Declaration

subtype NonNegFloat is Float range 0.0 .. Float'Last;
subtype ApproxFloat is Float digit 5;

78

Attributes of Types

Attributes (attribute functions in text) are bits of information associated with an

Ada object.

Examples:

IntegerFirst -- most negative integer

Integer’Last -- most positive integer

FloatLast -- most positive float

Float'Large -- same as Float'Last

Float'Digits -- number of significant digits float can hold
Float'Small -- smallest positive float (nonzero)
Character'Pos -- gives the character code

Character'Val -- gives the character that has certain character code

We can use these attributes :
> In declarations (see NonNegFloat on previous)
> In calculations or other program statements

> In output

Most attributes are only changed by the way objects are declared (cannot change

after declaration)

79

Numerical Input / Output

Since many numeric types can exist, need to tell Ada which types we want to do

input/output with

First Instantiate (Tailor) the Appropriate Packages

> Either precompile the instantiations into our working Ada library

1. -- precompiled instantiations of Integer_10O and

2. -- Float_IO for the predefined Integer and Float types

3.

4. with Text IO,

5. package My Int IO is new Text_IO.Integer_IO(Num => Integer),
6.

7. with Text_IO;

8. package My Flt 10 is new Text_IO Float_IO(Num => Float),

9.

10. with Text_IO;

11. package My Nat IO is new Text_IO.Integer_IO(Num => Natural),
12.

> OR

80

Numerical Input/Output

> Add line 5 to programs that do Integer I/O, line 8 to programs that do floating
point I/O and line 11 to programs that do Natural I/0.

The Package instantiations would go in the declarations section of your program
(between procedure and begin).
with Text IO,
procedure Number Example is
-- Declaration Area
Int1, Int2 : Integer,;
Flt1,FIt2 : Float;
package My Int 10 is new Text_IO.Integer_IO(Num => Integer),
package My Flt 1O is new Text_IO Float_IO(Num => Float),
begin -- Main Program

-- Program Statements

end Number Example;

81

Formatted Integer Values

My Int 10 Put(Item => n, Width => w);,

Value Width Displayed Output
234 4 ()234
234 5 ()()234
234 6 (O)O()234
-234 4 -234
-234 6 ()()-234
234 Len ()()()2341fLenis 6
234 1 234
234 0 234

82

Formatted Floating-Point Values

My Flt 10.Put (Item => x, Fore f, Aft => a, Exp =>¢),

Value Fore Aft Exp Displayed Output
3.14159 2 2 0 ()3.14

3. 14159 1 2 0 3.14

3. 14159 3 1 0 ())31
3.14159 1 3 0 3.14
3.14159 2 5 0 (1)3.14159
3. 14159 1 3 2 3.142E+00
0.1234 1 2 0 0.12

-0 . 006 1 2 0 -0.01

-0 . 006 1 2 2 -6.00E-03
-0 . 006 1 5 0 -0 . 00600
-0 . 006 4 3 0 ()()-0.006

83

Program Documentation

> Describes our intentions and thought process for the algorithm and the final
program.

> Contains information about the program data requirements and algorithm.
> Includes comments in the program

Problem statement

Analysis statements

Algorithm outline

Follow the software development method, then use the documentation developed

as starting point in coding your program.

84

Developing a Program from its Documentation

Duplicate the problem data requirements (part of the analysis phase) in the

program declaration part as comments.

Below each of these comments, enter the Ada syntax for constant and variable

declarations.

To develop the program body, begin with the initial algorithm written as a list of
comments. Then, move each algorithm refinement under the algorithm step that it refines.
After the refinements are in place in the program body, you can begin to write actual Ada
statements. Place the Ada code for each step directly under that step. For very simple
steps that are refined (equivalent to one Ada statement), edit the refinement, changing it

from English to Ada.

85

Case Study : Finding Area and Circumference of a Circle

Problem

Read in the radius of a circle and compute and print its area and circumference.

Analysis
Clearly, the problem input is the circle radius. Two outputs are requested: the
circle area and circumference. These variables should be type Float because the inputs and

outputs may contain fractional parts.

86

Data Requirements

Relevant Formulas

From our knowledge of geometry, we know the relationship between a circle's
radius and its area and circumference; these formulas are listed below. Note that we have
written the English description of each variable as an Ada comment to make it easier to

produce the declaration part of our solution program.

area of a circle = p x radius’

circumference of a circle = 2 x p x radius

Problem constant

Pi : constant : Float :=3.14159 ; -- (P1 =p)

Problem inputs

Radius : NonNegFloat; --radius of a circle

Problem outputs
Area : NonNegFloat; -- area of a circle

Circum : NonNegFloat, -- circumference of a circle

87

Initial Algorithm

1. Read the circle radius
2. Find the area.
3. Find the circumference.

4. Print the area and circumference.

Step 2 refinement

2.1. Assign Pi * radius * Radius to Area.

Step 3 refinement

3.1. Assign 2 * Pi * Radius to Circum.

88

Program Framework

-- CS 2970 Case Study 2

-- Finds and displays the area and circumference of a circle

procedure AreaAndCircum is
subtype NonNegFloat is Float range 0.0 .. FloatLast;
Pi : constant : NonNegFloat := 3.14159;

Radius : NonNegFloat; -- input - radius of a circle

Area : NonNegFloat, -- output - area of a circle

Circumference : NonNegFloat; -- output - circumference of a circle
begin -- AreaAndCircum
null -- the null makes if compilable - does nothing else

-- 1 Read the circle radius

--2 Find the area

--2.1 assign Pi * radius **2 to Area

--3 Find circumference

--3.1 Assign 2.0 * Pi * Radius to Circumference

--4 Display the Area and Circumference

end AreaAndCircum;

89

Program - Final

-- CS 2970 Case Study 2

-- Finds and displays the area and circumference af a circle

-- Program last modified Oct 1994

with Text_10;

use Text 10;

procedure AreaAndCircum is

subtype NonNegFloat is Float Range 0.0 .. Float'Last;
Pi : Constant NonNegFloat :=3.14159;
Radius : NonNegFloat,
Area : NonNegFloat;
Circumference: NonNegFloat;

package My Fl Io is new Float Io(Num => Float);,

begin
put(Item => " Enter radius> "),
My Fl Io.Get (Item => Radius);
Area = Pi*Radius**2;
Circumference = 2.0*Pi*Radius;
Put(Item => " The area is "),
My Fl Io.Put(Item => Area, Fore => 1, Aft => 2, Exp => 0),
New Line;
Put(Item => " The circumference is ");
My Fl To.Put(Item => Circumference, Fore =>1, Aft =>2, Exp =>0),
New_ Line;

end AreaAndCircum,

90

Enumeration Types

A type is a set of values and a set of operations appropriate for those values.

An enumeration type is a type defined by listing or enumerating its values. These

values are called enumeration literals.

Values must be either character literals or identifiers.

The ordering of values in an enumeration type is the order of their appearance in

the definition.

Enumeration literals are not case-sensitive.

Examples
type Day is (Monday, Tuesday, Wednesday, Thurshday, Friday,
Saturday, Sunday);

type Colors is (Red, Orange, Yellow, Green, Blue, Purple),

type NavyRanks is (ENS, LTJG, LT, LCDR, CDR, CAPT,R_ADM L,
R_ADM U, V_ADM, ADMIRAL),

type ArmyRanks is (SCND_LT, FIRST LT, CPT, MAJ, LTCOL, COL,
BRIG_GEN, MAJ GEN, LT _GEN, GENERAL),

91

Operations on enumeration Objects

Input/Output:

Done by instantiating (tailoring) the package Text I0.Enumeration Io for the
enumeration type.

package package name is new Text_IO Enumeration IO(Enum =>

Our_Enumeration_Type),

Assignment :
An enumeration value can be stored into an enumeration variable of that type; one

enumeration variable can be copied to another.

Equality/Inequality Test :

One enumeration value can be compared to another for equality/inequality (=, /=)

Relational operators:
<, >, <=, >= gare all defined for enumeration objects. The ordering relationship

| corresponds to the order of appearance in the type definition.

| Attribute functions:
Our_Enumeration_Type'First : the first value in the type
For type Days the Days'First is Monday
Our_Enumeration_Type'Last : the last value in the type
For type NavyRanks the NavyRanks'Last is ADMIRAL
Our_Enumeration_Type'Image : returns as a result a text string in whivh is written

the value of the parameter

92

Our_Enumeration_Type'Value (inverse of Image 0. The parameter text must be
of type string and contain text which can be interpreted as a literal of type

Our_Enumeration_Type.

Our_Enumeration_Type'Min(X,Y) : returns the lesser of X and Y (X, Y from type
Our_Enumeration_Type).
Our_Enumeration_TypeMax(X,Y) :returns the greater of X and Y

Succ and Pred : successor and predecessor

Pos and Val : position of a given value; value at a given position

93

Attribute Functions

-- CS 2970 Example 4 (T Shimeall)

-- Nonsence program to demonstrate attribute functions
-- Program last modified Oct 1994 (Lt.Col D. Giatros)
with Text 10;
use Text 10;

procedure Something is

type Days is (Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday, Sunday);

Today : Days;

AnotherDay: Days;

Position : Natural;

package My Nat Io is new Integer Io(num => Natural);

package Days Io is new Enumeration_Io(Enum => Days);

begin

Today := Thursday;

Position ;= DaysPos(Monday);

My Nat_Io.Put(Item => Position);
New _Line;

AnotherDay := Days'Succ(Today),
Days_Io.Put(Item => AnotherDay), New Line;
Position := Days'Pos(Today);,

My Nat Jo.Put(Item => Position);
New line;

AnotherDay := Days'Pred(Today);
Days_Io.Put(Item => AnotherDay);,

94

New _Line;

-- AnotherDay := Days'Succ(Sunday); Raise Constraint error
-- Days 10 Put(Item => AnotherDay),

-- New_Line;

-- Anotherday := DaysPred(Monday),

-- Days_Io Put(Item => AnotherDay),

-- New_Line;

AnotherDay := Days'Val(6);,

Days _Io Put(Item => AnotherDay),

New Line; AnotherDay := Days'Val(0);

Days Io.Put(Item => AnotherDay),

New Line,

-~ Position ;= Days'Val(Days'Succ(Today)), Raise Constrained_Error
-- My Nat_Io Put(Item => Position),

end Something;

95

Case Study : Translating from Arny/Air Force/Marine to Navy/Coast Guard
Officer Ranks

Problem

You are a confused new professor at the Naval Postgraduate School, with students
from a mixture of services. You'd like to have an easy way to translate the Army/Air

force/marine Officer ranks to their Navy/Coast Guard equivalents.

Analysis

The two sets of ranks can be represented by two enumeration types NavyRanks
and ArmyRanks, and can be read and displayed using two instances of Enumeration_IO,

which we will call Navy 10 and Army I0. We can use attribute functions to do the

translation.

96

Data Requirements

Problem data types :

Navy/Coast Guard officer ranks, an enumeration type
type NavyRanks is (ENS, LTJG, LT, LCDR, CDR, CAPT,R_ADM L,
R _ADM U, V_ADM, ADMIRAL),

Army/Air Force/Marine officer ranks, also an enumeration type:
type ArmyRanks is (SCND_LT, FIRST LT, CPT, MAJ, LTCOL, COL,
BRIG GEN, MAJ GEN, LT GEN, GENERAL),

Problem inputs :

Army/AirForce/Marine rank (FromRank : ArmyRanks)

Problem outputs :
Navy/CoastGuard rank (ToRank: NavyRanks)

97

Design
We were careful to list the Navy and Army ranks in the same order, so given an
Army rank, the corresponding Navy rank will be in the same position in its type. This

gives us the following algorithm.

Initial Algorithm

1. Prompt the user to enter one of the Army ranks , FromRank.
2. Find the corresponding Navy rank, ToRank.

3. Display the Navy rank.

Algorithm Refinements
Step 2 refinement
2.1. Save in Position the position of FromRark in its type.
2.2. Save in ToRank the corresponding value in the Navy type.

98

Program - Final

-- CS 2970 Case Study (T Shimeall)
-- Convert ranks from Army/Air Force/Marine Officer Ranks to Navy Ranks
-- Program last modified Oct 1994

with Ada. Text 10;
use Ada Text 10;
procedure ConvertRanks is
type NavyRanks is (ENS, LTJG, LT, LCDR, CAPT,R_ADM L,
R _ADM U, V_ADM, ADMIRAL),
type ArmyRanks is (SCND_LT, FIRST LT, CPT, MAJ, LTCOL,
COL, BRIG_GEN, MAJ GEN, LT_GEN, GENERAL),
FromRank: ArmyRanks;
ToRank : NavyRanks;
Position : Natural,
package Navy 10 is new Enumeration_IO (Enum => NavyRanks),
package Army IO is new Enumeration_IO (Enum => ArmyRanks),
begin
Put(Item => " Please enter an Army/Air Force/Marine officer rank>"),
Army 10.Get(Item => FromRank);,
Position := ArmyRanksPos(FromRank);
ToRank := NavyRanks'Val(Position);
Put(Item => " The Navy/Coast Guard rank is "),
Navy _I0.Put (Item => ToRank, Set => Text_lo.Lower_Case),
New_Line;

end ConvertRanks;

99

Types

> Scalar types - object expressed in a single value.

> Composite types - object is composed of several individual values.

> Discrete - exact values.

> Real - approximate values.

TTpe
Elemfntary Composite
Scalar Access Untagged
| record
l Tagged
access-to- access-to-
| object subprogram
task
i
‘ Protected
| .
| I Argay
| Real Discrete
| .
; I I r | Other array String
| Floating Fixed Integer Enumrration
; Point Point |
| | I Character Other
| Ordinary Decimal Bool enumeration
Fixed Fixed oolean
Point Point

Signed Modular
} Integer Integer

100

Subprograms

Procedures
Way to packaging up a series of steps.

We've already used procedures for our sample programs, and you can "nest"

procedures by including the full description inside a package or in the declaration section

of another subprogram.

need.

Procedures are "called" by naming them and providing any parameters that they

Put("This is a string")

More on defining procedures later.

Functions

Way of packaging up a computation to use it multiple times.

Functions always return a value, so they need to be called as part of an expression.
Vall:= Val2 + Abs(Val3),

More on declaring functions later.

Tasks

Left to other courses

101

Case Study : Displaying Today's Date in "mm/dd/yy" Form

Problem
Display today's date in the usual American form mm/dd/yy, for example, if today is
October 21, 1991, we display 10/21/91. If today is July 8, 1992, we display 7/8/92.

Analysis

Somehow we need to be able to ask the computer "what is today's date".

Today's date can be obtained from the computer's internal clock using the
appropriate Ada calendar facilities to get a time value and then to extract the month, day,

and year. These three values can then be formatted to give the desired display.

102

Problem data types :
We need only the type Time and the subtypes Year Number, Month_Number, and
Day_Number provided by the standard package Calendar.

Problem Inputs:

No inputs need to be entered by the user.

Problem Qutputs:
Today's date, in the form mm/dd/yy.

Data Requirements
103

Design

Initial Algorithm
1. Get the current time value from the computer's clock.
2. Extract the current month, day, and year from the time value.

3. Format and display the date.

Algorithm Refinements

Step 2 refinement
2.1. Extract the current month from the time value.
2.2. Extract the current day from the time value.

2.3. Extract the current year from the time value.

In step 3, we note that because the year is in the form yyyy (for example 1989), we

need to select the last two digits for formatting.

Step 3 refinement
3.1 Find the last two digits of the year.
3.2 Format and display the current month, day, and the last two digits of

the year.

104

Program - Final

-- Cs 2970 Case Study 4

-- Finds and displays today's date in the form mm/dd/yy
-- The date is gotten from package Calendar

-- Program last modified Oct 1994

with Ada Text Io,Ada Calendar;
use Ada Text lo,Ada.Calendar;

procedure TodayDate is
Right Now . Ada.Calendar.Time,
This Year : Year Number;
This Month : Month_Number;
This_Day : Day_Number;
Last Two_Digits : Natural,
This_Century : Constant := 1900,
package My Nat Io is new Integer Io(Num => Natural),

begin

Right Now := Ada.Calendar.Clock;

This_Month := Month(Date => Right_Now);
This_Day := Day (Date => Right Now);
This_Year := Year(Date => Right Now);

Last Two_Digits:= This_Year-This_Century;

Put (Item => " Today Date is "),

My Nat_IO.Put(Item => This_Month, Width => 1),

105

Put(Item =>"/"),

My Nat 10.Put(Item => This Day, Width =>1),

Put(Item =>"/"),

My Nat 10.Put(Item => Last Two_Digits, Width =>1);
New Line;

end TodayDate;

106

Program - Alternative

-- CS 2970 Case study 4 - Alternative

-- Finds today's date and displays in the form month dd, yyy
-- An enumeration type is used for months

-- The date is gotten from package Calendar.

-- Program last modified Oct 1994

with Ada. Text Io,Ada Calendar;
use Ada.Text Jo,Ada Calendar,

procedure TodayDate? is
type Months is (January, February, March, April, May, June,
July, August, September,October,November,December),

Right Now : Ada.Calendar.Time;
This_Year - Year Number;
This_Month : Month_Number;
This_Day : Day Number,

Last Two_Digits : Natural,
Month Name : Months;
package My Nat_IO is new Integer I0(Num => Natural),

package My Enum_IO is new Enumeration_IO(Enum => Months),
begin

Right Now := Ada.Calendar.Clock;

This_Month ;= Month(Date => Right_Now);

This Day :=Day (Date => Right Now);

107

This_Year := Year(Date => Right Now),

Month_Name = Months'Val(This Month -1);

Put (Item => " Today's Date is "),

My Enum_I0.Put(Item => Month_Name, Set => Upper_Case)
Put(",");

My Nat 10 Put(Item => This_Day, Width =>1),

Put(Item =>""),

My Nat IO.Put(Item => This_Year, Width =>1),

New Line;

end TodayDate?2;

> Sample Output
Today's Date is October 15, 1994

108

2

The If Statement
if Gross > 100.00 then
Net = Gross - Tax;
else
Net = Gross,

end if;

3 Selects the statement folowing then if the Boolean expression is true (i.e. if
Gross is greater than 100.00)

5 Selects the statement following else if the Boolean expression is false (i.e. if
Gross is not greater than 100.00).

109

Multiple Statements in if statement

As a manager of a clothing boutique, you want to keep records of your bank
transactions. You could use the if satement below to process a transaction amount
(TransAmount) that represents either a payment for goods received (in which case, Trans
Type is 'C'") or cash deposit. In either case, an appropriate message is displayed and the

account balance (Balance) is updated.

if TransType :='C' then
Text 10 Put(Item => 'Check for $"),
My Flt 10 Put(Item => TransAmount, Fore => 1, Aft => 2, Exp => 0);
Text_ 10.New Line;
Balance ;= Balance - TransAmount -- Deduct check amount
else -- deposit
Text 10 Put(Item => 'Deposit of $");
My Flt_IO.Put(Item => TransAmount, Fore => 1, Aft => 2, Exp => 0),
Text I0.New_Line;
Balance = Balance + TransAmount -- Add deposit amount

end if;

110

The One Alternative if Statement

The following if statement has one alternative, which is executed only when X is

not equal to_0.0. It causes Product to be multiplied by X; the new value is then saved in

Product, replacing the old value. If X is equal to 0.0 the multiplication is not performed.

-- Multiply Product by a nonzero X only
if X /= 0.0 then
Product := Product * X;

end if;

The following if statement orders any two values stored in variables X and Y so
that X is not greater than Y. if the two numbers are already in the proper order, the

statement sequence is not executed.

if X > Y then --switch X and Y
Temp :=X; -- Store old X in Temp
X =Y, --Storeold Yin X
Y :=Temp; -- Storeold XinY

end if;

The vanables X, Y, and Temp must, of course, all be the same type.

111

The Multiple - Alternative if Statement

The if statement below has three alternatives. It causes one of the three variables

(NumPos, NumNeg, or NumZero) to be increased by 1 depending on whether X is greater

than 0, less than 0, or equal to 0, respectively.

-- Increment NumPos, NumNeg, NumZero depending on X
if X>O0 then
NumPos := NumPos + 1;
elsif X <0 then
NumNeg ;= NumNeg +1;
else --X=0
NumZero := NumZero + 1;

end if;

Here 1s a four alternative if statement

if GPA<=1.5 then
Text_10.Put(Item => "Exploring civilian opportunities");
elsif GPA <2.0 then
Text 10 .Put(Item => "Academic Probation");
elsif GPA <3.0 then
Text _10.Put(Item => "Progressing satisfactorily");
else
Text_10.Put(Item => "Made the Dean's List- send money")

end if;

112

2

An if Statement Implementing a ""Decision Table"

Salary Range Base Tax Percentage of Excess
0.00 - 1499.99 0.00 15%

1500.00 - 2999.99 225.00 16%

3000.00 - 4999.99 465.00 18%

5000.00 - 7999.99 825.00 20%

8000.00 - 14999.99 1425.00 25%

if Salary < 0.0 then

Text_IO.Put (Item => "Error! Negative salary $");
My _Flt_IO Put(Item => Salary, Fore => 1, aft => 2, Exp => 0);
Text 10.New_Line;
elsif Salary < 1500.00 then -- first range
Tax := 0.15 * Salary,
elsif Salary < 3000.00 then -- second range
Tax ;= (Salary - 1500.00) * 0.16 + 225.00;
elsif Salary < 5000.00 then -- third range
Tax := (Salary - 3000.00) * 0.18 + 465,
elsif Salary < 8000.00 then -- fourth range
Tax ;= (Salary - 5000.00) * 0.20 + 825,
elsif Salary < 15000.00 then -- fifth range
Tax := (Salary - 8000.00) * 0.25 + 1425,

else
Text_I0.Put (Item => "Error! Too large salary $"),
My Fit_I0 Put(Item => Salary, Fore => 1, aft => 2, Exp => 0);
Text 10 New_Line;

end if;

113

Be Careful of the Order of Alternatives!

wrong!
if Score >= 60 then

Text _10.Put (Item =>'D');
elsif Score >= 70 then

Text 10.Put (Item =>'C"),
elsif Score >= 80 then

Text 10.Put (Item => 'B'),
elsif Score >= 90 then

Text_10.Put (Item =>'A');
else

Text 10.Put (Item =>'X'),

end if;

right!
if Score >= 90 then
Text_10.Put (Item =>"A"),
elsif Score >= 80 then
Text_10.Put (Item => 'B'),
elsif Score >= 70 then
Text_I0.Put (Item =>"'C),
elsif Score >= 60 then
Text_10.Put (Item =>'D");
else
Text_10.Put (Item =>'X");

end if;

114

If Statement Example

-- CS 2970 Example 5
-- Read in three letters and print the one that comes first, alphabetically

-- Program last modified Oct 1994

with Ada Text 10,
use Ada Text_IO;

procedure FirstLetter is
Ch1,Ch2,Ch3:Character;, -- input three letters
AlphaFirst :Character; -- output alphabetically first letter

begin

Put(Item => "Enter any three letters, then press Return>"),
Get(Item => Chl),
Get(Item => Ch2),
Get(Item => Ch3);

-- Save the smaller of Chl and Ch2 in AlpaFirst
if Ch1 < Ch2 then

AlphaFirst:= Chl,
else

AlphaFirst:= Ch2,;

end if;

115

-- Save the smaller of Ch3 and AlphaFirst in AlphaFirst
if Ch3 < AlphaFirst then
AlphaFirst:=Ch3;

end if;
Put(Item => AlphaFirst);
Put(Item => " is the first letter alphabetically");

New_Line;

end FirstLetter;

116

Functions

> A function is one kind of subprogram, a way of "putting a computation in a
box" so it can be done repeatedly.

> Each function is defined to take zero or more parameters, which are its input
values, and must also have a return type, indicating the type of value to be
returned as the output of each function call.

-- function specification

function Average (X : Float, Y : Float, Z : Float) return Float ;

-- function body

function Average (X : Float, Y : Float, Z : Float) return Float is
Result : Float;

begin -- Average
Result =(X+Y+Z)/30;
return Result;

end Average,

> X, Y, Z are named formal parameters

> Strictly speaking, the function spec is not necessary when declaring a function
in a main program, but we show both, to make it easier to understand package
specs and package bodies, which contain function specs and function bodies,
respectively.

117

Declaring Functions

> You can declare a function anywhere you can declare variables, for example, in
a main program. The function is then usable only within the program in which it
is declared.

> A more useful place to declare a function is in a package, which is then
compiled and placed in your library for further use by any other unit (package
or program) that “with"s the package.

> The declaration of a function (or procedure) can be placed in arbitrary order in
relation with the programs declarations.

> By client we mean a program unit that "with"s a package.

-- function specification

function Maximum (Valuel, Value2 : Integer) return Integer;,

-- function body
function Maximum (Valuel, Value2 : Integer) return Integer is
Result : Integer;
begin -- Maximum
if Valuel > Value2 then
Result == Valuel,
else
Result .= Value2
end if;
return Result;

end Maximum,;

118

Function Example

-- CS 2970 Example 6 (T. Shimeall)
-- A simple example of a function declaration and use showing three forms

-- of call syntax
-- This program last modified Oct 1994 by Lt. Col. D. Giatros

with Ada Text_I0,Ada Numerics.Elementary_Functions;

use Ada Text IO, Ada Numerics Elementary Functions;

procedure Func_Example is
Sidel, Side2 : Float;
Side3 : Float;

function Hype Length (Legl,Leg2: Float) return Float is
begin

return Sqrt((Legl*Legl)+(Leg2*Leg2)),
end Hype Length;

package My F1 10 is new Float_IO(Num => Float),

begin

Put(Item => "Enter lengths of two sides of a triangle");
My Fl 10.Get(Item=> Sidel),
My Fl_10.Get(Item=> Side2),

New_Line;

119

Side3:= Hype Length(Sidel,Side2),

Put(" The third side has length ");

My Fl To Put(Item => Side3, Fore =>0, Aft => 2, Exp => 0);
New Line;

end Func_Example;

| 120

Sample Lab Computer

P -
1
\

121

Control Statements

> Selection : the if statement if then

if Boolean_expression then

sequence of statements;

end if;

122

Control Statements

3> Selection : the if statement If then else

if Boolean expression then
sequence of statements;
else
sequence of statements;

end if;

123

The If Statement
if Gross > 100.00 then
Net = Gross - Tax;
else
Net := Gross;

end if;

> Selects one of the two assignment statements listed. It selects the statement
following then if the Boolean expression is true (i.e. if Gross is greater than
100.00)

> Selects the statement following else if the Boolean expression is false (i.e. if
Gross is not greater than 100.00).

124

The if statement

As a manager of a clothing boutique, you want to keep records of your bank
transactions. You could use the if statement below to process a transaction amount
(TransAmount) that represents either a payment for goods received (in which case, Trans
Type is 'C") or cash deposit. In either case, an appropriate message is displayed and the

account balance (Balance) is updated.

if TransType :='C' then
Text 10.Put(Item => 'Check for $");
My _Flt_10.Put(Item => TransAmount, Fore => 1, Aft => 2, Exp => 0),
Text 10.New Line;
Balance := Balance - TransAmount -- Deduct check amount
else -- deposit
Text_10.Put(Item => Deposit of §");
My Fit 10 Put(Item => TransAmount, Fore => 1, Aft => 2, Exp => 0),
Text 10 New_Line;
Balance := Balance + TransAmount -- Add deposit amount

end if;

125

The if Statement

The following if statement has one alternative, which is executed only when X is
not equal to_0.0. It causes Product to be multiplied by X; the new value is then saved in

Product, replacing the old value If X is equal to 0.0 the multiplication is not performed.

-- Multiply Product by a nonzero X only
if X /= 0.0 then
Product := Product * X

end if;

The following if statement orders any two values stored in variables X and Y so
that X is not greater than Y. if the two numbers are already in the proper order, the

statement sequence is not executed.

if X >Y then --switch X and Y
Temp = X, -- Store old X in Temp
X=Y,; -- Storeold Y in X
Y ;= Temp; -- Storeold XinY

end if;
The variables X, Y, and Temp must, of course, all be the same type. Although the

values of X and Y are being switched, an additional variable Temp is needed for storage of

a copy of one of these values.

126

Control Statements
> Selection : the if statement if then elsif else
if Boolean_expression then
sequence of statements;
elsif Boolean_expression then
sequence_of statements,
elsif Boolean expression then

sequence_of statements;

else
sequence_of statements;

end if;

127

The Multiple - Alternative if Statement

The if statement below has three alternatives. It causes one of the three variables

(NumPos, NumNeg, or NumZero) to be increased by ! depending on whether X is greater

than 0, less than O, or equal to 0, respectively.

-- Increment NumPos, NumNeg, NumZero depending on X
if X>0 then
NumPos ;= NumPos + 1;
elsif X <0 then
NumNeg := NumNeg +1,
else --X=0
NumZero := NumZero + 1,

end if;

Here is a four alternative if statement

if GPA<=1.5 then

Text 10.Put(Item => "Exploring civilian opportunities")
elsif GPA <2.0 then

Text 10 .Put(Item => "Academic Probation"),
elsif GPA <3.0 then

Text_10.Put(Item => "Progressing satisfactorily");

else

Text_I10.Put(Item => "Made the Dean's List- send money");,

end if;

128

>

Implementing a '"Decision Table"

Salary Range Base Tax Percentage of Excess
0.00 - 1499.99 0.00 15%

1500.00 - 2999.99 225.00 16%

3000.00 - 4999.99 465.00 18%

5000.00 - 7999.99 825.00 20%

8000.00 - 14999.99 1425.00 25%

if Salary < 0.0 then

elsif

elsif

elsif

elsif

elsif

else

Text_10.Put (Item => "Error! Negative salary $"),
My Flt 10 Put(Item => Salary, Fore => 1, aft => 2, Exp => 0),
Text_10.New_Line;
Salary < 1500.00 then -- first range
Tax :=0.15 * Salary;
Salary < 3000.00 then -- second range
Tax ;= (Salary - 1500.00) * 0.16 + 225.00;
Salary < 5000.00 then -- third range
Tax := (Salary - 3000.00) * 0.18 + 465,
Salary < 8000.00 then -- fourth range
Tax = (Salary - 5000.00) * 0.20 + 825,
Salary < 15000.00 then -- fifth range
Tax := (Salary - 8000.00) * 0.25 + 1425;

Text_I0 Put (Item => "Error! Too large salary $");
My Fit I0.Put(Item => Salary, Fore => 1, aft => 2, Exp => 0),
Text 10.New_Line;

end if;

129

Control Statements

> Selection : the case statement

case selector is
when list_of alternatives =>
sequence_of statements;
when list_of alternatives =>

sequence_of statements;

when others =>

sequence of statements;

end case;

» If the selector is a name (type conversion or a function call) then each
non-others discrete choice shall cover only values in the subtype, and each value
of that subtype shall be covered by some discrete choice (either explicitly or by
others).

> If the selector is root integer, universal integer or a discriminant of a formal
scalar type, then we shall have an others discrete choice.

> Otherwise each value of the base range of the type of the expression shall be
covered (either explicitly or by others).

130

Case Statement Continuous

131

Control Statements

» Selection : the case statement - alternative list

All possible values must be referenced

when 5 =>

when 4 | 83 {23 =>

when 100 .. 125 =>

when 50 {60 |70 .. 75|80 .. 85=>

when others =>

Others alternative must come last.

Others alternative can be used as we referred in previous pages.

132

Program - Final

-- CS 2970 Example
-- A simple example of a case control statements by using as a selector
-- a function in the main procedure .

-- Program created in Oct 1994

with Ada. Text 10;
use Ada. Text IO;

procedure Your Grade is
Grade :Integer;
package Integer 10 is new Integer I0(Num => Integer);

use Integer 10;

function Find_Gr(G : Integer) return Character is

Temp : Character;

begin

case G is
when 95..100 => Temp:="A',
when 85.94 => Temp:='B’,
when 75..84 => Temp:='C',
when 65..74 => Temp:=D,
when others => Temp:=F

end case;

return Temp;

end Find_Gr;

133

begin -- Your Grade

Put(Item => " Give the grade as integer number");

New_Line; Integer lo.Get(Item => Grade),

case Find_Gr(Grade) is

when 'A' => Put(" Your Gradeis A "),

when B' => Put(" Your Gradeis B "),

when 'C' => Put(" Your Grade is C ");

when 'D' => Put(" Your Grade is D");

when 'F' => Put(" You failed "),

when others => Put(" There is an error in the program "),
end case;

New Line;

end Your Grade;

134

Functions

> A function is one kind of subprogram, a way of "putting a computation in a
box" so it can be done repeatedly.

3 Each function is defined to take zero or more parameters, which are its input
values, and must also have a return type, indicating the type of value to be
returned as the output of each function call.

Parameters function
body

Result

135

Functions

> Strictly speaking, the function spec is not necessary when declaring a function
in a main program.

> Show both, to make it easier to understand package specs and package bodies,
which contain function specs and function bodies, respectively.

-- function specification

function Average (X : Float, Y : Float, Z : Float) return Float ;

-- function body

function Average (X : Float, Y : Float, Z : Float) return Float is
Result : Float;

begin -- Average
Result =(X+Y+Z)/3.0;
return Result;

end Average;

136

Calling A Function

%> Our function specification
function Maximum (Valuel, Value2 : Integer) return Integer

Valuel, Value2 are named formal parameters.

> Typical function calls.

Larger := Maximum(Valuel => FirstValue, Value2 => SecondValue);
FirstValue, SecondValue are named actual parameters.

Actual parameters bay be expressions and their types must agree with those of the

corresponding formal parameters.

137

Declaring Functions

> You can declare a function anywhere you can declare variables, for example, in
a main program. The function is then usable only within the program in which it
is declared.

> A more useful place to declare a function is in a package, which is then
compiled and placed in your library for further use by any other unit (package
or program) that "with"s the package.

5 The declaration of a function (or procedure) can be placed in arbitrary order in
relation with the programs declarations.

> By client we mean a program unit that "with"s a package.

Example
-- CS 2970
_- A simple example of a procedure that calls a function to find the larger integer

-- Program last modified Oct 1994

with Text 10,
use Text 10;

procedure MaxTwo is

FirstValue : Integer;
SecondValue : Integer;

Larger - Integer;

package Integer 10 is new Integer_I0(Num => Integer);

use Integer 10,

-- function specification

function Maximum (Valuel, Value2 : Integer) return Integer;

-- function body

function Maximum (Valuel, Value2 : Integer) return Integer is

Result : Integer;

begin -- Maximum
if Valuel > Value2 then
Result ;= Valuel;

139

else

Result ;= Value2
end if;
return Result;

end Maximum,;
begin -- Maxtwo
Put(Item => "Please enter first integer value >");
Integer 10.Get (Item => FirstValue),
Put(Item => "Please enter second integer value >");
Integer 1O Get (Item => SecondValue);
Larger ;= Maximum (Valuel => FirstValue, Value2 => SecondValue),
Put(Item => " The larger number is ");
Put(Item => Larger, Width => 1),

New Line;

end MaxTwo;

140

Packages

> A package is Ada's way of letting us collect together, in one place, a number of
reusable resources (procedures, functions, variables, types) for further use.

> Text 10 and Calendar are two of Ada's predefined packages (that is required
by the standard). We will use others and also write a few of our own.

> A package has two parts, which are best located in separate files : the package
specification and the package body.

> The package specification shall not have a body unless it requires one.

Categories of Packages

> Packages of types and constants. These types of packages are not allowed to
have body.

> Packages with subprograms that logically belong together.
> Packages with memory
> Packages witch construct abstract data types.

> Child packages.

141

Separating Package Specs and Bodies

> An advantage of separating package specification and body files is that one can
create several package bodies for a given specification, compiling whichever
one is most useful.

> Switching package bodies (compiling a different one) does not necessitate

recompiling client programs.

Package
GIANT LETTERS

With package package

GIANT _ GIANT_ Text_I10;

LETTER LETTER;

procedure

Giant_Ada;
'With Text 10; ka
package body package body
GIANT LETTER Text_10;

142

Packages

> The package specification serves as a "table of contents” or "contract” with the
client program, describing those things in the package that are made available to

client programs.

> Entities declared in the package specification are visible to another program
unit.

package minmax is
-- specifications of functions provided by MinMax package
function Minimum (Valuel, Value2 : Integer) return Integer;

function Maximum (Valuel, Value2 : Integer) return Integer;

end minmax;

143

Packages

> The package body contains the code bodies for all the procedures and functions
promised by the specification.

> Entities declared in the package body are visible only in this package(are not
visible to the another program unit)

package body minmax is

-- bodies of functions provided by minmax package

function Minimum(Valuel, Value2 : Integer) return Integer is

Result : Integer;

begin
if Valuel < Value2 then
Result := Valuel;
else
Result ;= Value2;
end if;
return Result;

end minimum,;

144

function Maximum (Valuel, Value2 : Integer) return Integer is
Result : Integer;
begin
if Valuel > Value2 then
Result ;= Valuel,
else
Result ;= Value2;
end if;
return Result;
end Maximum,

end minmax;

145

Packages Client Program

with Ada Text 10, minmax;
use Ada Text lo;

procedure MinMaxThree is

-- finds the largest and smallest of three values

--using the Minimum and Maximum functions from package minmax
Numl, Num2, Num3, Largest, Smallest : Integer;
package Integer 10 is new Integer 10 (Num => Integer),
begin
Put (Item => " Please enter first integer value >");
Integer 10.Get(Item => Numl),
Put (Item => " Please enter second integer value > ");
Integer 10.Get(Item => Num?2);

Put (Item => " Please enter third integer value >");

Integer 10.Get(Item => Num?3),

146

Largest := MinMax Maximum(Valuel => Numl, Value2 => Num2);
Largest := MinMax Maximum(Valuel => Largest, Value2 => Num3),
Smallest = MinMax Minimum(Valuel => Num1, Value2 => Num2),
Smallest := MinMax. Minimum(Valuel => Smallest, Value2 => Num3),

Put (Item => " The smallest number is "),
Integer 10 Put(Item => Smallest, Width => 1);
Put (Item => " and the largest number is "),
Integer 10 Put(Item => Largest, Width => 1),
New Line;

end MinMaxThree;

147

Compilation Order

> When working with packages, the order of compilation of the pieces is very
important.

> The package specification must be compiled before either the package body or
the client, because the compiler checks both package body and client for
consistency with the specification.

> The package body does not have to be compiled before the client: all three (
specification, body, client) must be compiled before linking is possible.

> Recompiling a package body makes it necessary to re-link the client in order to
include the modified code in the package body. (You can continue to use the
old executable file, but of course it does not use the latest version of the
package).

> Recompiling a package specification makes it necessary to re-compile both the
package body and all chients that "with" the package.

> We can avoid a recompilation if we use child packages.(We see later in the
Object Oriented programming features).

148

Packages

Compilation Order

with B, C;
procedure
A

B.ADS

package B

package
body B

B.ADB

A. ADS
or A.ADB

separate
procedure D

149

C.ADS

package
body C

separate
procedure E

C.ADB

E.SEP

Control Statements

> Iteration : the simple loop statement

loop
sequence of statements;

end foop;

> loop statement includes a sequence of statements that is to be executed
repeatedly zero or more times.

150

Control Statements

> Iteration : the loop statement with for
for loop_parameter in start_value .. end _value loop
sequence_of statements;

end loop;

> loop_parameter is declared automatically type depends on start_value and
end value.

> loop parameter can not be assigned a new value in the loop.

> loop_parameter can not be used outsideof the loop

> start_value, end_value should be integer type or enumeration type

Examples

forIin 1. 10 loop
forIin-1 . 10loop

151

Example

The statement

for Countin 1 .. 5 loop
Text 10 New_Line,
end loop;
has the same effect as the five statements

Text 10.New_Line;,

Text 10 New_Line,

Text I0.New_Line;

Text I0.New_Line;

Text_ 10.New_Line;

The following for loop displays a sequence of HowMany aterisks. If HowMany
has a value of 5, 5 asterisks in a row will be displayed; if HowMany has a value of 27, 27

aterisks will be displayed, and so on.
for Count in 1 .. HowMany loop

Text_I0.Put(Item =>"*');

end loop;

153

Example

for Count in 0 .. 255 loop
if Count mob 8 = 0 then
Text 10.New_Line;
end if;
Text_10.Put (Character'Val(Count));

end loop;

Get (Value),
for Letter in reverse 'a' .. 'z' loop
Text lo.Put(Letter);
for Space in 2 .. Value loop
Text 10 .Put('*');
end loop;
Text 10 New Line,

end loop;

154

Case Study : Sum of Integers

Problem

Write a program that finds the sum of all integers from 1 to N.

Analysis

In order to solve this problem, it will be necessary to find some way to form the
sum of the first N positive integers.

Data Requirements

Problem inputs

The last integer in the sum (N : Positive)

Problem outputs

The sum of integers from 1 to N (Sum : Natural)

155

Design

Initial algorithm
1. Prompt the user for the last integer (N).
2. Find the sum (Sum) of all the integers from 1 to N inclusive

3. Display the sum
Algorithm Refinements
Step 2 refinement
2.0 Set Sum to zero
2.1 Add 1 to Sum
2.2 Add 2 to Sum
2N Add N to Sum
For a large value of N it would be rather time consuming to write the list of steps.

We would also have to know the value of N before writing this list; consequently, the

program would not be general, as it would work for only one value of N.

156

Design (Cont'd)

Because steps 2.1 through 2N are all quite similar, we can represent each of them

with the general step.

2.1 Add i to Sum

This general step must executed for all values of i from 1 to N, inclusive. This

suggest the use of a counting loop with i as the loop variable.

Program Variables :

loop control variable - represents each integer from 1 to N (i:Positive)
The variable i will take on the successive values 1, 2, 3, 4, . . ., N. Each time the

loop is repeated, the current value of i must be added to Sum. We now have a new

refinement of step 2.

Step 2 refinement
2.1 for each integer i from 1 to N
Add ito Sum

end loop;

157

Program - Final

with Ada.Text 10,
use Ada.Text 10,

procedure SumlIntegers is
-- finds and displays the sum of all positive integers from 1 to N
N : Positive;
Sum : Natural,
package Integer 10 is new Integer IO (Num => Natural);
begin -- Sumlntegers
-- Read the last integer N
Put (Item => "Enter the last integer in the sum >";

Integer 10.Get (Item => N),

-- Find the sum (Sum) of all integers from 1 to N

Sum = 0; -- intitialize Sum to 0
for Iin 1..N loop

Sum = Sum + I -- Add the next integer to Sum

end loop;

158

-- Displays the sum
Put (Item => "The sum of the integers from 1 to ");

Integer 10 Put(Item => N, Width => 1),

Put (Item =>"1s "),
Integer 10.Put(Item => Sum, Width => 1),
New Line;

end SumlIntegers;

159

More Generalizing : Minimum, Maximum, and Average of a list of Numbers

Problem :
Write a program that finds and displays the minimu, maximum, and taverage of a

list of integers.

Analysis

This is quite similar to the previous problem. We can the variables CurrentValue
and Sum as above. As each value is read, it must be added into the sum, but also
compared against the current minimum, Smallest, and the current maximum Largest. The
comparison can be handled by the Minimum and Maximum functions already provided in

the minmax package.

160

More Generalizing : Minimum, Maximum, and Average of a list of Numbers

Data Requirements

Problem inputs
Number of items to be averaged
NamValues : Positive
Temporary storage for each data value

CurrentValue : Integer

Problem outputs
Minimum of the NumValues data values
Smallest : Integer
Largest of the NumValues data values
Largest : Integer
Average of the NumValues data values

Average : Integer

161

Initial Algorithm

1. Prompt the user for the number (NumValues) of values to be summed.

2. Prompt the user for each data value : add it to the sum, check to see if it is a

new minimum, maximum, and check to see if it is a new maximum.

3. Compute the average of the values.

4. Display the minimum maximum, and average.

162

Initial Algorithm

Step 2 refinement
2.1. Initialize Sum to O, Smallest to Integer’Last, and Largest to
Integer'First.
22
for each data value loop

Read the data value in to the CurrentValue and add
CurrentValue to Sum;
Determine whether the data value is a new minimum or
maximum.

end loop

Step 2.2 refinement
for each data value loop

2.2.1 Read the data value in to the CurrentValue and add
CurrentValue to Sum,

2.2.2 Replace Smallest with the smaller of itself and
CurrentValue.

2.2.3 Replace Largest with the larger of itself and
CurrentValue.

end loop

163

Program - Final

with Ada. Text 10,Minmax;
use Ada. Text 10,

procedure MinMaxAvg is

-- Finds and displays the minimum, maximum and average

-- of a list of data items from an external data file

NumValues : Positive; -- the numeber of items to be averaged
Sum, -- the sum being accumulated
CurrentValue, -- the next data item to be added
Smallest, -- minimum of the data values

Largest, -- maximum of the data values

Average - Integer; -- average of the data values

TestScores : File_Type; -- program variable naming th input file

package My In is new Integer 10(Num => Integer);

begin

-- Open the file and associate it with the file variable name

Open (File => TestScores, Mode => In_File, Name => "scores.dat"),

164

-- Read from the file the number of items to be averaged
My _In.Get(File => TestScores, Item => NumValues);
Put(" The number of scores to be averaged is "),
My In.Put(Item => NumValues, Width =>1);

New_Line;

-- Initialize program variables
Smallest ;= Integer'Last;
Largest := Integer'First;

Sum =0;

-- Read each data item log to the screen, add it to Sum

-- and check if it is a new minimu or maximum

for Count in 1 .. NumValues loop

My In.Get(File => TestScores, Item => CurrentValue)

Put(Item => " Score number "),

My _In.Put(Item => Count, Width => 1),

Put(Item => " is "),

My In Put(Item => CurrentValue, Width => 1),
New_Line;

Sum = Sum + CurrentValue,

Smallest := minmax Minimum(Valuel => Smallest, Value2 =>
CurrentValue),
Largest := minmax Maximum(Valuel => Largest, Value2 =>

CurrentValue),

165

end loop;

-- compute the average since Sum and NumValues are integers
-- the average will be rounded to the nearest integer

Average .= Sum / NumValues;

-- Display the results

Put(Item => " The Smallest is "),
My In Put(Item => Smallest, Width => 1),
New_Line;

Put(Item => " The Largest is "),

My In.Put(Item => Largest, Width => 1),
New_ Line;

Put(Item => " The average is "),
My In Put(Item => Average, Width =>1);

New_Line,

end MinMaxAvg;

166

Subtypes of Scalar Types

> Subtypes let us take advantage of Ada's range checking to detect bad user
input.

> Subtypes also help us more closely model the "real world".

> General form of a subtype declaration:

subtype name is base type range min.max;

sequence_of statements;

> Example of general form :

subtype Uppercase is character range 'A'.. 'Z

167

Examples of Scalar Subtypes

> Predefined Subtypes in the Language

subtype Natural is Integer range O..Integer’Last;

subtype Positive is Integer range 1..Integer’Last;

> Predefined Subtypes in the Calendar Package

subtype Year Number is Integer range 1901..2099,
subtype Month Number is Integer range 1.12;
subtype Day Number is Integer range 1.31;

> Subtype of an enumerated type
type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun),
subtype Weekday is Days range Mon Fri;
subtype Weekend is Days range Sat..Sun,

subtype Mon_Fri is Weekday;

> Other subtypes
subtype Inat is Integer;
subtype Flt is Float;

> Note that the ordering relation is preserved!!

168

Compatibility of Types and Subtypes

> Two values are compatible if :
1. They have the same type name (Integer, Integer).
2. One value's type is a subtype of the other's value type (Natural, Integer).
3. The values are subtypes of the same base type (Positive, Smalllnt).

[in a limited sense]

> That means that even though My _Int_10.Put (or Integer_IO.Put) expects an
Integer it will accept any subtype of Integer.(e.g. Natural, Positive)

169

Type Membership : The Operator in

> The in Operator can be used to determine whether a given value is a member of
a type's set of values.

Examples

type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun),
subtype Weekday is Days range Mon. Fri,
subtype Weekend is Days range Sat. Sun;
subtype Mon Fri is Weekday;

if Tomorrow in WeekDays then
Text 10.Put (Item => "Another day, another dollar ");
Text 10 New Line,

else
Text_10.Put (Item => "we've worked hard, It's play hard!"),
Text 10.New_Line;

end if;

package Day_IO is new Enumeration 10 (Enum => Days);
for WhichDay in Weekdays loop

Day 10.Put (Item => WhichDay);

Text 10.New_Line;

end loop;

170

Overloading

> Overloading permits us to bind the same identifier to two or more functions,
procedures or operators.

> The advantage is that we can use the same identifier to perform similar
operations on different types.

> For example we know we can add two integers using the "+ operator and we
can also add two floats using the '+ operator. This is an example of
"overloading".

a, b, ¢ : Integer;

X,y, z . Float;
c=a+tb;
Z=X1Yy,

> Carrying the idea a step further : if we tell the computer how to do it we can

also add two vectors using the same '+' symbol. One we do that we can perform

vector addition using the '+ operator. Therefore we have used the same symbol
'+' to express the same abstraction in this case addition.

a, b, ¢: Vector;

=a+tb;

171

Overloading

> You should note : however, that since YOU are the one who tells the computer
HOW to perform addition it does not necessarily mean you will perform
addition (you may actually multiply, divide, or subtract instead).

> Overloading can be abused if it is used too much or if it is used to name
functions and procedures that do not have similar behavior (i.e. we expect a
sort procedure to sort and not shuffle data instead).

> Explicit overloadings of " =" are permitted for any combination of parameter
and result types.

> Explicit overloadings of " /=" are permitted, so long as the result type is not
Boolean.

172

Introduction to Exception Handling

5 Exception handling allows the programmer to "catch” errors (exceptions)
before they are passed to the Ada runtime system, which will generally halt a
program.

> In other words, exception handling allows the programmer to gracefully recover
from errors (notice that I didn't call them "bugs").

> In order to accomplish this the programmer must supply the necessary
statements to handle the exceptions. A set of statements, proceeded by the
reserved words exception, are called the exception handler.

Example :
exception

when Constraint Error =>
Text_10.Put (Item => "The input value is out of range ");
Text 10.New_Line;

when Data_Error =>
Text_10.Put(Item => "The input value is

not well formed");

Text_10.New_Line;

173

Exceptions

If we anticipate that an exception may occur in a part of our program then we can

write an exception handler to deal with it.

begin
-- sequence of statements
exception
when Constraint_Error =>
-- do something

end;

174

Exceptions

begin

-- sequence of statements
exception

when Constraint_Error =>

Text_IO.Put (" Numeric or Constrained error occurred”);
when Storage Error =>

Text 10.Put (" Ran out of space"),
when Data Error | My_Seq 10.Data_Error =>

Text_IO.Put (" The input value is not well formed ");
when others =>

Text_IO.Put (" Something else went wrong");

end;

> When an exception occurs control passes to the handler for the particular
exception.

> Ifthere is no handler, the subprogram terminates and the exception is passed
back to the calling subprogram.

> If the calling subprogram has no handler, the exception is passed back to it's
calling subprogram etc.

> When The statements within the handler have been executed, the program
continues with the next statement after the block statement.

175

Exceptions

> Package Text_IO contains the predefined following exceptions :
1. Constraint_Error - when something is out of range or a numeric

operation cannot give a correct result.

2. Program_Error - when we attempt to violate the control structure in

some way.

3. Storage Error - accessible memory used up by too many recurcive

calis.

4 Tasking_Error - parallel programs communication failure.

raised. When an exception occurs, the normal execution of the program ceases
and if there is no exception handler the program terminates with an error

|

1

| > When the program executes if we break a language rule an exception may
\

|

1

| message.

176

Exceptions

> The library package I0_Exceptions define the following exceptions needed by
the predefined input - output packages :

1. Status_Error - attempt to read or write to a file not opened, or to open

a file that is already open.

2. Mode_Error - attempt to read a Out_File or write to an In_File.

3. Name_Error - external file name can not be found.

4. Use_Error - attempt to open a file for illegal use. (Write to the
keyboard).

5. Device Error - failure of input or output device.

6. End_Error - attempt to read past the End of File.

7. Data_Error - attempt to read the wrong type.

8. Layout_Error - attempt to Set_Col or Set_Line that exceeds the

maximum limits.

177

Exceptions Continue

> Also there is a library package named Ada Exceptions which contatins the
following main procedures and functions to handle all the exceptions.

1. procedure Raise_Exception (E : in Exception_Id; Message : in String := ""),
2. function Exception Message (X : Exception_Occerrence) return String;

3. procedure Reraise_Occurence (X : Exception_Occurence),

4. function Exception_Identity (X : Exception_Occurrence) return Exception_Id;
5. function Exception_Name (X : Exception_Occurrence) return String;

4. function Exception_Information (X : Exception_Occurrence) return String;

178

Introduction to Exception Handling

> Let's look at a complete program with exception handling statements included

with Ada Text _IO;
use Ada. Text_IO;

procedure RobustSumFact is

-- Prompts the user for an integer from 1 to 10
-- and displays the sum and factorial of all integers from 1 to N Sum

-- and Factorial are gotten from the functions sum and

subtype OneToTen is Positive range 1..10,
MaxNum : OneToTen; -- input a value from one to ten
SumToCount : Positive; -- output - sum of integers from one to Count

ProdToCount : Positive; -- output - product of integers from one to Count

package Integer 10 is new Integer_Io(Num => Positive),

function sum(N : Positive) return Positive is
S : Positive:=1;
begin
if N=1 then
return 1;
else

return N+sum(N-1);

179

begin

end if;

end sum,

function factorial(N : Natural) return Positive is

begin
if N =0 then
return 1
else
return N * factorial(N-1);
end if;

end factonal;

Put(Item => "Please enter an integer from 1 to 10>"),

Integer 10.Get(Item => MaxNum),

New Line;

Put(Item=>"N Sum Factonal"),

New Line; Put(Item=>" "),

New_Line;

for Count in 1 .. MaxNum loop
SumToCount := Sum(N=> Count);
ProdToCount:= factorial(N => Count),
Integer 10 Put(Item=> Count, Width =>3);
Integer 10 .Put(Item=> SumToCount, Width =>7);
Integer 10.Put(Item => ProdToCount,Width =>9);
New_Line;

end loop;

180

Exception
when Constraint_Error =>
Put(Item => " The input value is out of range");
New Line;
when Data Error =>
Put(Item => " The input value is not well formed"),

New_Line;

end RobustSumFact;

181

Control Structures - Conditional Loops

> Recall that the loop variable in a for loop be a descrete type which 1s either
incremented or decremented. Additionally, the number of times to iteratively
execute command statements must be known in advance.

> Knowing in advance the number of times a sequencce of statements must be
executed is not always possible. For instance, the program may be reading its
input from a file of unknown length, or the user of the program may desire to
input several data items for processing in one sitting.

> This type of situation calls for something called a conditional loop. That is, it
calls for a loop that will loop only while or until a certain condition exists (e.g.
haven't reached the last data item in the file yet).

> There are two ways in which this can be accomplished in Ada, through the use
of (1) a loop with an exit statement or (2) the while loop construct.

182

Control Statements

> Iteration : the loop with exit statement

loop
sequence of statements;
exit when Boolean_expression,
sequence_of statements;

end loop;

183

Control Statements

> Iteration : the loop statement with while

while Boolean_expression loop

sequence_of statements,

end loop;

\
\
\
}
} 184
\
|
|
\

Usage Example - while loop

> Using the for loop we could only decrement or increment by the next whole
unit. The example below shows how the while loop can be used to increment
by 2 rather than by single whole units (1).

with Ada. Text 10,
use Ada.Text 10;

procedure OddNumbers is

-- Displays odd numbers from 1 to 39
OddNumber : Integer;
package Integer IO is new Integer_IO(Num => Integer),

begin -- OddNumbers

OddNumber =1,

while OddNumber <= 39 loop
Integer 10.Put(Item => OddNumber, Width => 3);
OddNumber := OddNumber +2;

end loop;

New_Line;

end OddNumbers;

> Note the loop body is repeated "while" the condition (OddNumber <+ 39) is
true.

185

While vs For loop

> It is always possible to implement a for loop using a while loop; however, the
converse is not true.

for i in 1.5 loop
square ==1%*1;

end loop;

1:=1

while 1<=5 loop
square ‘=1 * i,
i=1+1;

end loop;

> In the for loop the control variable i is declared implicitly and only exists within
the body of the loop. That is, i is considered a local variable within the for
block.

~ In the while loop the variable i is just like any other variable and must be
declared explicitly within the program. Its lifetime is like that any other
"normal" variable.

> Additionally, i1 is explicitly incremented by 1 in the while loop; whereas, in the
for loop it is implicitly incremented.

> In this example the for loop is more appropriate.

186

While loop Control

> Never Test for an exact value when using a Float
1=0,;
Epsilon :=2.0/3.0;
while (1 < 150.0) loop
i:=1+ Epsilon;

end loop;

> Use of a Flag Vanable
MoreData :=="'Y",
while (MoreData ='Y") loop
Text_10.Put ("Do you have more data Y or N ? >"),
Text_10.Get(MoreData);

end loop;

> Use of a Sentinel
Sentinel = 1,
Text_10.Put ("Enter score or enter -1 to quit");
Integer 10.Get(Score),
while (Score /= Sentinel) loop
Sum := Sum + Score;
Text_IO.Put("Enter score or enter -1 to quit");
Integer 10.Get (Score),
Text_ 10.New_Line;

end loop;

187

Loop and Exit Statement

> Often it is useful to create a loop using the general loop construct with an exit
statement.

> This may be particularily useful if we wish to execute a sequence of statements
at least once before terminating a loop (e.g. a main program loop which asks
the user if he / she wishes to continue or quit).

loop
-- Display Main Menu
Text_10.Get (Response),
exit when (Response ='q');
end loop;

> Notice also, a while loop can be implemented using the exit when loop
construct but that the conditional logic is the opposite.

1:=0;

Epsilon :=2.0/3.0;

while (1< 150.0) loop
1:=1+ Epsilon;

end loop;

1:=0;

Epsilon :=2.0/3.0;

loop
exit when (i < 150.0)
i:=1+ Epsilon;

end loop;

188

Robust Exception Handling

5 The general loop with a simple exit can be used for input error checking. That's
why subtyping comes in handy!!

loop
begin
-- Prompt the user for an input value.
exit; -- if valid data input
exception -- if bad data input
-- Determine which exception was raised
-- notify user and take corrective action
end loop;

1. If bad data is input an exception is raised.

2. Control is passed to the exception handler.

3. After the exception handler has executed, control flows to the end loop.

4. The loop is repeated.

> In general, an exception hendler returns control to the end of the enclosing
begin-end block in which it exists.

189

Procedures

procedure Procedure Name (formal parameter list) is

declarative part

begin
statement 1;
statement 2;

statement 3;

statement N;

end Procedure Name,

> Procedure Call

procedure_Name (actual_parameter_list),

> Procedure differs from a function in that it does not return a result but a
sequence of statements is put into actions.

1 190

Procedures

> A procedure call is considered to be a statement.

> The actual parameter's types must be the same as the corresponding formal
parameter's types.

> In actual parameter can be variable, constant or an expression. It must have a
value.

> In formal parameter is considered to be a constant that is initialized at the time
of the call. In the procedure it is not permitted to change the value of a in
formal parameter.

> Out actual parameter must be variable.

> Out formal parameter is treated as a variable without an explicit initial
expression. The value of an out parameter may be read, so we can use it.

> In Out actual parameter must be a variable. It must have a value.

> In Out formal parameter can be used as an ordinary variable. Its value can both
be used and changed. If the values is changed the value of the actual parameter
is changed.

> Variables declared within the procedure exist only within the procedure (Local
variables).

191

Example

with Ada. Text IO;
use Ada Text 10;

procedure Sample is

N: Integer;
M: Integer:=3;
package Integer 10 is new Integer JO(Num => Integer);

procedure Cube (X: in Integer; Y: out Integer) is
begin

Y= X**3;
end Cube;

begin
Cube(X=>2, Y=>N),
Integer_JO.Put(Item => N);
New_Line;
Cube(X=>M, Y =>N);
Integer 10.Put(Item => N),
New Line,
Cube(X =>M*2, Y =>N),
Integer_IO.Put(Item => N),
New Line;

end Sample,

192

Example

with Ada. Text_IO;
use Ada Text IO,

procedure Sample is
N: Integer:=3;
package Integer IO is new Integer_10(Num => Integer);

procedure Cube (X: in out Integer) is
begin

X = X**3;
end Cube;

begin
Cube(X=>N);
Integer 10.Put(Item => N),

New_Line;

end Sample,

193

Example

with Ada Text 10,
use AdaText 10,

procedure Sample is

N: Integer;
M: Integer:=3;
package Integer IO is new Integer I0(Num => Integer),
procedure Cube (X: in Integer := 1; Y: out Integer) is
begin
Y=X*X*X,
end Cube;
begin
Cube(X=>2, Y=>N),
Integer 10 Put(Item => N);
New_Line;
Cube(X=>2,Y =>N),
Integer 10 .Put(Item => N);,
New_Line;
Cube(M, Y =>N),
Integer 10 .Put(Item => N);
Cube(Y =>N);
Integer 10.Put(Item => N);
New Line;

end Sample;

194

Larger Example - A Simple Sort

with Ada Text 10,
use Ada.Text 10,
procedure Sort3Numbers is
-- Reads three numbers and sorts them
-- so that they are in increasing order
Num]l : Float; -- a list of three cells
Num? : Float;
Num3 : Float;
-- a procedure specification
procedure Order (X : in out Float; Y : in out Float),
-~ a procedure body
procedure Order(X : in out Float, Y : in out Float) is
-- Orders a pair of numbers represented by X and Y so that
-- smaller numbers is in X and the larger number isin Y
--Pre X and Y are assigned values

-- Post X has the smaller value and Y has the larger value

Temp : Float;
begin
if X>Y then
Temp = X,
X:=Y;
Y:=Temp,
end if;

end Order;

195

package Float IO is new Float_IO(Num => Float),

begin
Put (Item => " Enter e float numbers to be sorted. one per line");
New Line;
Float_10.Get(Item => Numl),
Float_10.Get(Item => Num2),
Float_10.Get(Item => Num3),

Order (X => Numl, Y => Num2); -- Order the data in Nm1 and Num2
Order (X => Numl, Y => Num3); -- Order the data in Nm1 and Num3
Order (X => Num2, Y => Num3); -- Order the data in Nm2 and Num3
-- Display the results

Put(Item => " The three numbers in order are"),

Float_I0.Put(Item => Numl, Fore=>5,Aft=>2 Exp=>0),
Float_I0.Put(Item => Num2, Fore=>5,Aft=>2 Exp=>0);
Float_10.Put(Item => Num3, Fore=>5 Aft=>2 Exp=>0),

New Line;

end Sort3Numbers;

|
i 196
\
i

Procedures in a Package - the Specification

-- Package for getting numeric input robustly

package RobustInput is

-- Gets an integer value in the range MinVal , MaxVal from the terminal
-- Pre MinVal and MinVal are defined
-- Post MinVal <= Item <= MaxVal

procedure Get (Item : out Integer,
MinVal: in Integer;
MaxVal: in Integer);,
-- Gets a float value in the range MinVal, MaxVal from the terminal
-- Pre MinVal and MinVal are defined
-- Post MinVal <= Item <= MaxVal

procedure Get (Item : out Float;
MinVal: in Float;
MaxVal: in Float);
end RobustInput;

197

Procedures in a Package - the Body

with Ada. Text_I1O;
use Ada. Text IO,
package body RobustInput is

package Float_IO is new Float_10 (Num => Float),
package Integer IO is new Integer IO (Num => Integer);

procedure Get(Item : out Integer;
MinVal: in Integer;
MaxVal: in Integer) is
-- Gets an integer value in the range MinVal , MaxVal from the terminal
-- Pre MinVal and MinVal are defined
-- Post MinVal <= Item <= MaxVal

subtype TempType is Integer range MinVal .. MaxVal,
Templtem: TempType; -- temporary copy of MinVal

begin

loop
begin -- exception handler block
Put(Item => " Enter an Integer between ");
Integer 10.Put(Item => MinVal, Width =>0);
Put(Item => "and"),

198

Integer 10 Put(Item => MaxVal, Width =>0),
Put(Item => ">");
Integer 10.Get(Item => Templtem);
Item := Templtem,
exit; -- valid data

Exception -- invalid data
when Constraint_Error =>
Put(" Value entered is out of range. Please try again"),
New Line;
Skip Line;
when Data_Error =>
Put(" value entered not an integer. Please try again"),
New_Line;
Skip_Line;

end; -- exception handler block

end loop;

end Get,

procedure Get (Item : out Float;
MinVal: in Float;
MaxVal: in Float) is
-- Gets a float value in the range MinVal, MaxVal from the terminal
-- Pre MinVal and MinVal are defined
-- Post MinVal <= Item <= MaxVal
subtype TempType is float range MinVal .. MaxVal,
Templtem : TempType,
begin

199

loop
begin -- exception handler block
Put(Item => " Enter a floating
point value between"),
Float_10.Put(Item => MinVal,
Fore => 1, Aft=>2 Exp=>0);
Put(Item => " and "),
Float IO Put(Item => maxVal,
Fore=>1, Aft=>2 Exp=>0),
Put(Item =>">");
Float_10.Get(Item => Templtem);
Item := Templtem,

exit; -- vahd data

|
|

|

|

|

\

|

i

1 exception -- invalid data
} when Constraint_Error =>

1 Put(Item => " Value is out of range. Please try again"),
; New Line;

| Skip_Line;

| when Data_Error =>

Put(Item => " Value entered not floating point.

Please try again");

| New_Line;
Skip Line;
end; -- exception handler block
‘ end loop;
end Get;

end RobustInput;

|
i
; 200
|
|
|

Main Procedure

with RobustInput;

procedure TestRobustInput is

begin

subtype Smalllnt is Integer range -10 .. 10,
subtype LargerInt is Integer range -100 .. 100;
subtype SmallFloat is Float range -10.0 .. 10.0,
subtype LargerFloat is Float range -100.0 .. 100.0;

Small : Smallint;
SmallF : SmallFloat;
Larger : Largerint;
LargerF: LargerFloat,

Robustinput. Get(Small, SmallInt'First, SmallInt'Last),
Robustinput. Get(Larger,LargerInt'First,LargerInt'Last),
Robustinput. Get(SmallF,SmallFloat'First,SmallFloat'Last);
Robustinput. Get(LargerF,LargerFloat'First,LargerFloatLast),

end TestRobustinput;

201

Numeric Data Types

> So far we have seen several predefined numeric data type (subtypes) : Integer,
Positive, Natural and Float. But why so many different types? Why not use a
Float type for all our numeric operations?

1. We would like to try and use the most appropriate type for representing

the values in a program.
2. Integer values require less storage.
3. Integer operations are faster than floating point operations.
> Conversions among Numeric Types
1. Ada does not allow mixing types in an expression; rather it requires
explicit conversion.
T (expression)
T is the name of a new converted numeric type .
Example:
Float Number : Float := 6.0,

Natural Number : Natural := 3;

Float Number : = Float (Natural Number) ;
Natural Number : = Natural (Float Number);

202

Using an External Ada.Numerics.Elementary_Functions Library

> Many of the mathematical functions which we frequently used are not a part of
the standard Ada language. However, most compilers supply a package to do
these functions (e.g.. Gnat's mathematics library is a child package
Numerics.Elementary Functions).

> Also there is a another generic package
Numerics.Generic_Elementary Functions that we have to instantiate for
numeric types.

> Because both Numerics. Elementary_Functions and
Numerics.Generic_Elementary Functions are children of the Numerics we must
not use the clause use if we would like to have visibility in package Numerics.

Example:
with Ada.Text 10,
use Ada Text 10;

with Ada Numerics Elementary Functions,

procedure SquareRoots is

-- Hlustrates the square root function provided by Numerics Elementary_Functions
MaxNumber : constant : Positive := 20;

package Integer 10 is new Integer IO (Num => Integer),

package Float_IO is new Float_]O (Num => Float),

begin
Put (Item => "Number Square Root");
New Line;
Put (Item =>" "),
New Line;

203

for Number in 1. MaxNumber loop
Integer_IO.Put (Item => Number, Width => 3);
Float_IO.Put (Item => Numerics. Elementary Functions .
Sqrt(Float(Number)), Fore => 7, Aft => 5, Exp => 0),
New_Line;
end loop;

end SquareRoots;

204

The use clause

> So far, when we have had occasion to take advantage of functions or
procedures in external packages we have used the with clause and have
prefixed the name of the package to the function or procedure. Ada provides a
method to avoid this qualification in the form of the use clause.

> Be careful when the external package is a child and we use the use clause we
can not have access to its parent package. For example if we write use
Numerics. Elementary _Functions then we do not have access to the package
Numerics (parent of Elementary Functions) and on Ada (which is the parent
of Numerics).

Example:

with Ada. Text 10,

use Ada. Text 10,

with Ada Numerics Elementary Functions;

use Ada Numerics Elementary Functions;

procedure SquareRoots is

-- Tllustrates the square root function provided by Numerics.Elementary Functions
MaxNumber : constant : Positive ;= 20,

package Integer 10 is new Integer IO (Num => Integer),

package Float_IO is new Float_IO (Num => Float),

begin
Put (Item => "Number Square Root");
New Line;
Put (Item =>" "),
New Line;

205

for Number in 1.MaxNumber loop
Integer 10.Put (Item => Number, Width => 3);,
Float 10.Put (Item => Sqrt(Float(Number)), Fore => 7, Aft => 5
Exp => 0);

>

New_Line;
end loop;

end SquareRoots;

> The same SquareRoots procedure if we use the Generic_Elementary Functios
package.

with Ada. Text 10;
use Ada. Text 10;

with Ada Numerics.Generic_Elementary Functions;

procedure SquareRoots is

-- Illustrates the square root function provided by Numerics. Elementary Functions
MaxNumber : constant : Positive .= 20;

package Integer 1O is new Integer 10 (Num => Integer);

package Float IO is new Float IO (Num => Float);

package my math is new Generic_Elementary Functions (Float);

use my_math;

begin
Put (Item => "Number Square Root");
New Line;
Put (Item =>" "),
New Line;

206

for Number in 1.MaxNumber loop
Integer 10.Put (Item => Number, Width => 3);
Float IO Put (Item => Sqrt(Float(Number)), Fore => 7, Aft => 5,
Exp => 0);
New_Line;
end loop;

end SquareRoots;

207

Writing Mathematical Formulas in Ada

> The following examples below illustrate how simple equations are written in

Ada.

Mathematical Formula

b? — 4ac

a+b—c

208

Ada Expression
B**2-40*A*C

A+B-C

(A+B)/(C+D)

1.0/(1.0+A**2)

A*(-(B+C))

X **]J

Short - Circuit Boolean Operators

> In addition to the Boolean operators which we have already examined, there are
two additional operators and then and or else.

> Circumstances do arise when it is desirable to evaluate the right side of an and
only if the left side is true, or the right side of an or if the left side is false.
Especially if the evaluation process is a time consuming operation (such as a
computationally expensive function call) or if evaluation causes side effects (
like advancing a file pointer).

or vs or else

In the following example both sides of the expression are evaluated :

Flagor((Y+2Z)/=(X-2))

but in the expression below the right side is only evaluated if Flag is false:

Flagorelse ((Y+Z)/=(X-2))

209

Short - Circuit Boolean Operators

and vs and then

Consider the expression below :

(X/=00)and (Y/X>5.0)

If X 1s 0, the expression is false and therefore the entire expression would evaluate
to false. Not only that, but if we tried to evaluate the right hand side we would generate a

Constraint_Error.

If we rewrite our expression using the short - circuit and operator then we avoid
that possible problem.
(X/=0.0)and then (Y/X>5.0)

210

The Character Type

Earlier we discussed the Ada's character type, but now we will

take a little closer look through the use of examples.

Recall that the set of all characters used is really a enumeration type which has
been declared in the package Standard; therefore all of the operators which are valid for

enumeration types can be used with Ada's Character type (e.g. 'Val, Pos, In, etc.).

Let's look at some of the features of the predefined character set used most
frequently (in our case ASCII).
1. The digits are an increasing sequence of consecutive characters.

!O!<|1l<|2!<.. .<!9|

2. The uppercase letters are an increasing set of consecutive characters.

1Al<lB'<|Cl<lD|<..'<|Z!

3. The lowercase letters are an increasing set of consecutive characters.

|al<lb|<|c|<...<|z|

4. The digit characters precede the uppercase characters and the
uppercase characters precede the lowercase characters.

<l L. <9O<A<B <. . <Z'<A <D L. <

211

words.

Example

Now let's look at a simple program that counts the number of blanks between

with Text 10;
procedure BlankCount is

-- Counts the number of blanks in a sentence.

I

Blank : constant Character .= '', -- character being counted

Sentinel : constant Character .= "', -- sentinel character
Next : Character; -- next character in sentence
Count : Natural, -- number of blank characters

package My Int IO is new Integer 10 (Num => Integer),

begin -- BlankCount
Count ;= 0; -- Initialize Count
Text I0.Put(Item => "Enter a sentence ending with a period.");

Text I0.New_Line;

-- Process each input character up to the period
Text 10.Get(Item => Next); -- Get first character
Text 10 Put(Item => Next),
while Next /= Sentinel loop -- invariant: Count is the count of blanks so
-- far and no prior value of Next is the sentinel
if Next = Blank then
Count ;= Count + 1; -- Increment blank count

end if;

212

Text 10 .Get(Item => Next); -- Get next character
Text 10 Put(Item => Next),

end loop; -- assert: Count is the count of blanks and Next is the sentinel
Text 10.New_Line,

Text_I0 Put(Item => "The number of blanks is "),

My Int_IO.Put(Item => Count, Width => 1),

Text 10 .New Line;

end BlankCount;

213

Example

Now let's look at a simple procedure that reads a character token and converts it

toa Natural number.

with Text 10;

procedure GetNaturalToken (NumData : OUT Natural) is

-- Reads consecutive characters ending with the symbol %. Computes

-- the integer value of the digit characters, ignoring non-digits.

-- Pre: None-- Post: NumData is the value of the digit characters read.
Base : constant Positive := 10, -- the number system base
Sentinel : constant Character ;= '%"; -- the sentinel character
TempNum : Natural, -- to compute the numerical value
Next : Character; -- each character read
Digit : Natural, -- the value of each numeric character

-- (its ASCII position)

begin -- GetNaturalToken

-- Accumulate the numeric value of the digits in TempNum
TempNum := 0, -- initial value is zero
Text_10.Get(Item => Next), -- Read first character
while Next /= Sentinel loop
-- invariant:
-- No prior value of Next is the sentinel and
-- if Next is a digit, TempNum is multiplied by Base and
-- Next's digit value is added to TempNum

214

if (Next >="'0") and (Next <='9') then
-- Process digit
Digit := CharacterPos(Next) - Character'Pos('0"); -- Get digit value
TempNum := Base * TempNum + Digit; -- Add digit value

end if;

Text_10.Get(Item => Next); -- Read next character

end loop;

-- assert:

-- Next is the sentinel and

-- TempNum is the number in base Base formed from the digit

-- characters read as data

NumData := TempNum,;

end GetNaturalToken,

215

Putting it All Together - Loops, Case, Characters, Numbers and Packages

> The following case study presents the opportunity to tie together many of the
things we have discussed so far in the course.

The Case Study illustrates the following :

—

. Using the if and case constructs.

N

. Using loops.

W

. Using procedures (in packages).

S

. Hidden procedures within a package.

W

. Using subtypes in a package.

[@))

. Using existing packages.

~J

. Creating our own package.

e

. General problem solving,

A7

The general idea of the case study is to develop a package which can be used to
display the value of a number in words (like you would on a check).

216

The Package Specification

package NumToWord is

-- procedure to print a positive integer in words. The subtype

-- Natural16 is provided so that the package will be correct

-- on all Ada compilers including those for which Natural is 16 bits.
subtype Natural16 is Natural RANGE 0 .. 32767,
procedure PutInWords (Item: Natural16),

end NumToWord;

217

The Package Body

with Text 10,

package body NumToWord is
-- package body for displaying nonnegative integers in words
subtype Digit IS Natural range 0..9;

-- local procedures

procedure Put1Digit (Item : Digit) is
-- Puts its argument in words.
-- Pre: Item is assigned a value between 0 and 9.

-- Post: Item is displayed in words.

begin -- Put1Digit

case Item is
when 0 => Text_I0.Put (Item => "zero"),
when 1 => Text_I0 Put (Item => "one");
when 2 => Text_I0 Put (Item => "two");
when 3 => Text_10.Put (Item => "three"),
when 4 => Text_10 Put (Item => "four");
when 5 => Text_I0 Put (Item => "five"),
when 6 => Text_10.Put (Item => "six");
when 7 => Text_I0 Put (Item => "seven"),
when 8 => Text 10 Put (Item => "eight");
when 9 => Text_10 Put (Item => "nine"),

end case;

end Put1Digit;

218

The Package Body - Continued

procedure Call1Digit (Units : Digit) is

-- Calls procedure Put1Digit with parameter Units if
-- Units is not zero.

-- Pre: Units is assigned a value between 0 and 9.

-- Post: Calls Put1Digit if Units is not 0.

begin -- Call1Digit

if Units /= 0 then
Text_10.Put(Item =>"");
Put1Digit (Item => Units),
end if;

end Call1Digit;

219

The Package Body - Continued
procedure Put2Digits (Item : Natural16) is
-- Puts its argument in words.
-- Pre: Item is assigned a value between 0 and 99.
-- Post: Item is displayed in words.

-- Uses: Put1Digit

Tens : Digit; -- tens digit

Units : Digit; -- units digit
begin -- Put2Digits

Tens = Item/ 10; -- Get tens digit

Units ;= Item REM 10; -~ Get units digit

case Tens is

when 0 =>

Put1Digit (Units); -- less than ten
when 1 =>
case Units is -- in the teens

when 0 => Text_10.Put (Item => "ten"),

| when 1 => Text_10.Put (Item => "eleven"),

i when 2 => Text 10 Put (Item => "twelve");
when 3 => Text IO Put (Item => "thirteen"),
when 5 => Text 10.Put (Item => "fifteen"),
when 8 => Text 10 Put (Item => "eighteen");
when4|6|7]9=>

Put1Digit (Units); -- Put ...teen

Text _I0.Put (Item => "teen"),

|
1
i end case;
|

220

The Package Body - Continued

when 2 =>
Text_10.Put (Item => "twenty"); -- Put twenty ...
Call1Digit (Units);

when 3 =>
Text_I0.Put (Item => "thirty"); -- Put thirty ...
Call1Digit (Units),

when 4 =>
Text IO Put (Item => "forty"); -- Put forty ...
Call1Digit (Units);

when 5 =>
Text_IO Put (Item => "fifty"); -- Put fifty ...
Call1Digit (Units);

when 8 =>
Text_IO.Put (Item => "eighty");, -- Put eighty ...
Call1Digit (Units);,

when 6|7 |9 =>
Put1Digit (Tens), --Put ..ty..
Text_10.Put (Item => "ty");
Call1Digit (Units);

end case,

end Put2Digits,

221

The Package Body - Continued
procedure PutinWords (Item: Natural16) is
CopyOfltem: Natural;
Thousands: Natural,;
Hundreds: Natural,
begin
if Item = O then
Put1Digit (Item => Item);
else
CopyOfltem := Item;
if CopyOfltem >= 1000 then
Thousands := CopyOfltem / 1000,
Put2Digits (Item => Thousands);
Text 10.Put (Item => " thousand "),
CopyOfltem := CopyOfltem REM 1000;
end if;
if CopyOflitem >= 100 then
Hundreds := CopyOfltem / 100;
Put1Digit (Item => Hundreds),
Text 10.Put (Item => " hundred "),
CopyOfltem := CopyOfitem REM 100,
end if;
if CopyOfltem /= 0 then
Put2Digits (Item => CopyOfltem);
end if;
end if;
end PutinWords;
end NumToWord;

222

The Test Program

with Text 10,
with RobustInput,
with NumToWord;

procedure TestNumToWord is

-- program to demonstrate and test NumToWord PutinWords
N: NumToWord.Natural16;
package My int 10 is new Integer_IO (Num => Integer),

begin -- TestNumToWord
for Count IN 1..5 loop
Text 10 .Put (Item => "Integer "),
My Int IO.Put (Item => Count, Width => 1),
Text_10.New_Line;
RobustInput.Get (Item => N,
MinVal => NumToWord Natural16'First,
MaxVal => NumToWord Naturall6'Last),
NumToWord PutinWords (Item => N);
Text 10.New_Line,
end loop; |

end TestNumToWord,

| 223

Composite Types : Records and Arrays

> Composite types give us a way to group data items into larger "chunks”. This is
analogous to grouping statements together in blocks, subprograms, and
packages.

> Ada provides the record and array type constructors, which can be used to form
composite types from simpler types.

> A record is a data structure containing a group of related data items; the
individual components, or fields, of a record can contain data of different types.
We can use a record to store a variety of information about a person, such as
the person's name, marital status, age, date of birth, and so on. Each data items
is stored in a separate record field; we can reference each data item stored in a
record through its field name. For example, Person.Name references the field
Name of the record Person.

> Also a record can be extended with additional components by using tagged type
record. The new record inherits exactly the structure, operations, values and
also all the additional components from the parent record.

A1

\

|

|

‘ An array is a data structure used for storage of a collection of data items that
| are all of the same type (e.g. all the exam scores for a class). Using an array

| allows us to associate a single variable name (e.g. Scores) with the entire

‘ collection of data. This enables us to save the entire collection of data in main
| memory (one item per memory cell) and to reference individual items easily.

| For example, the third score in the array Scores would be referenced as

| Scores(3).

224

A Record Type for Employee Records

Given the following declarations :

NameSize : constant Positive = 20,

subtype IDRange is Positive Range 1111.9999;

subtype NameType is String (1..NameSize),

type GenderType is (Female, Male),

type DepartmentManager is (Research, Administration, Headquarters);

> We declare a record type Employee:
type Employee is
record
ID : IDRange;
Name : NameType;
Gender : GenderType,
NumDepend : Natural;
Rate : NonNegFloat;
TaxSal : NonNegFloat;

end record;

225

Record Type Continue

> We declare a record type Employee as tagged type:
type Employee is tagged
record
ID : IDRange;
Name : NameType;
Gender : GenderType;
NumDepend : Natural,
Rate : NonNegFloat;
TaxSal : NonNegFloat;
end record;
Now we can extend the Employee record to a new one Manager record
(more details later in the object oriented paragramming with Ada 94)
type Manager is new Employee with
record
DeptManager : DeptType;
end record;
The Manager records inherits all the fields , operations from the Employee (
parent) and an additional field named DeptManager.

> A mathematical type, perhaps used in graphics :
type Point is
record
X : Float;
Y : Float;

end record;

226

Record Variables or Objects

The record type definnition, like all other type definition, creates no object or
variable, allocates no memory. It is a template that describes the format of each record and
the name of each individual data element. A variable declaration is required to allocate

storage space record. The record variables Clerk and Janitor are declared next.

Clerk : Employee;

Janitor : Employee;

ID

Name

Sex

NumDep

Rate

TaxSal

227

Working with Record Objects

Data can be stored in Clerk through this sequence of assignment statements :

Clrerk. ID = 1234;

Clerk Name :=" John Jackson ";

Clerk. Gender = Male;

Clerk. NumDepend =2,

Clerk. Rate :=3.98;

Clerk. TaxSal := Clerk>Rate * 40.0 - Float (Clerk. NumDepend) * 14.40;

1D 1234

Name Jio |h|n Jlalc | k{is{oln
Sex Male

NumDep| »

Rate 3.98

TaxSal 130.40

228

Working with Record Objects (Continue)

Data can also be stored in Clerk through the use af a aggregate assignment of the
form :
Clerk = (ID => 1234,
Name => "John Jackson",
Gender => Male,
NumDepend => 2,
Rate => 3.98,
TaxSal => 130.40),

> Once data are stored in a record, they can be manipulated in the same way
as other data in memory.

The statements
Text_I0.Put (Item => "The clerk is");
case Clerk Gender is
when Female => Text_10.Put(Item => :Ms. ");
when Male => Text_10.Put(Item => :Mr. "),
end case;

Text 10 .Put (Item => Clerk.Name),

Displays the clerk's name after an appropriate title (Ms., or Mr.)
The clerk is Mr. John Jackson

229

Operations on Record Objects

Remember : A type is a set of values and a set of operations

Set of values:
A record value is a collection of related data values of different types. Each data

value is stored in a separate field of the record.

Set of oparations:

> Store: if R1 is a record or tagged record (parent)with a field named F1 and
expression E 1s compatible with F1, then

R1FI:=E;
stores the result of evaluating E in field F1 of record R1.
Stere: if R1 is an extended tagged record (child) with a field named F1 and
expression E is compatible with F1, then
RI'(F=>E)

stores the result of evaluating E in field F1 of record R1.

> Retrieve: If the field R1.F1 is compatible with variable C then
C =R1FIl;
retrieves the value in field F1 of record R1 and copies it into C. We can also write

R1.F1 :=R2FI;

230

Operations on Record Objects - Continue

> Assignment : IfR1 and R2 are record variables of the same type, the
statement

R1:=R2;

copies all values associated with record R2 to record R1.

> Comparison : The result of the Boolean expression

R1=R2
is true if and only if each of the fields of R1 is equal to its corresponding field in
R2;

R1/+R2

is true if and only if at least one of the fields of R1 is not equal to its corresponding

field in R2.

231

Records Objects - Another Example

with Text_IO;
with Ada Numerics Elementary Functions;

use Ada Numerics.Elementary Functions;;

procedure DistOrigin is
-- Finds the distance from a point to the origin.
type Point is
record
X : Float;
Y : Float;

end record;

Point1 : Point; -- the data point
Distance : Float; -- its distance to the origin

package My Flt 10 is new Float 10 (Num => Float),
! begin -- DistOrigin

‘ Text_IO.Put(Item => "Enter X coordinate (floating point) > ");
; My_Flt 10.Get(Item => Point1.X);

} Text_10.Put(Item => "Enter Y coordinate (floating point) > ");
; My Flt_10.Get(Item => Point1.Y)),

1 Distance := sqrt(Point1.X ** 2 + Point1.Y ** 2);

| Text_I0.Put(Item => "Distance to origin is "),

|
j 232
|
|

My Fit_I0.Put(Item => Distance, Fore=>1,Aft=>2 Exp=>0);
Text 10 .New_Line;,

end DistOrigin,

233

Records as Parameters

Records can be passed to subprograms, as parameters of any mode, or returned as

the result of a function, just as simple objects can.

procedure GetPoint (Item : out Point) is

-- reads the X and Y coordinates of a pilot

-- Pre : none

-- Post : the point. item, is defined with values from the user

begin
Text 10 Put (Item => "Enter X coordinate (floating point) ,");
My Fit 10.Get (Item => Item.X);,
Text 10 Put (Item => "Enter Y coordinate (floating point) ,");

My Flt 10.Get (Item => Item.Y)),

end GetPoint;

w 234

Hierarchical Records

A hierarchical record is one that has a record as one or more of its fields.

StringLength : constant Positive := 20,
ZipCodeLength : constant Positive := 5;

subtype IdRange is Positive range 1111..9999;
subtype EmpString is String (1.. StringLength);
subtype ZipString is String (1.. ZipCodeLength);
type GenderType is (Female, Male),

type Employee is
record

ID : IDRange;
Name : EmpString;
Gender : GenderType,
NumDepend : Natural;
Rate : NonNegFloat;
TaxSal : NonNegFloat;

end record;
type Address is
record
Street : EmpString;
City : EmpString;
State : EmpString;
ZipCode: EmpString;

end record;

235

- Hierarhical Records - Continued

> Finally, here is the declaration of the hierarchical record for an employee, and a
declaration of an employee variable. Notice how simple the employee record is,
given the component record types; notice also how we have used the Date type
provided by the package Dates developed in the previous section.

type NewEmployee is
record
PayData : Employee;
Home : Address;
StartDate : Dates.Date;
BirthDate : Dates.Date;
end record;
Programmer : NewEmployee;
The field selector
Programmer StartDate;
references the subrecord StartDate (type Date) of the variable

Programmer.

The field selector
Programmer.StartDate. Year

references the Year field of the subrecord Programmer.StartDate.
The field selector

Programmer.Year

is incomplete (which Year field?) and would cause a syntax error.

236

Hierarhical Records - Continued

The record copy statement
Programmer.StartDate = DayOfYear;
copies each field of DayOfYear into the corresponding field of the subrecord

Programmer.StartDate.

The statements
Text_I0.Put (Item => "Year started),
My Int_I0O.Put(Item => Programmer.StartDate. Year, Width => 4);
Text_10.Put (Item => "Month started);
My Int_IO.Put(Item => Programmer.StartDate Month, Width => 4);

display two fields of the subrecord Programmer.StartDate.

The statements

Text_10.Put (Item => Programmer.PayData Name),

Text 10 Put (Item => " started work in);

My Int IO Put(Item => Programmer.StartDate. Year, Width => 4),
display the line

John Jackson started work in 1985

The computation for taxable salary could be written as
Programmer.PayData. TaxSal := Programmer PayData.Rate *
40.0 -
Programmer . PayData. NumDepend *
14 40,

237

Hierarhical Records - Continued
The procedure below is used to input data for an employee record.

procedure ReadEmployee (OneClerk : out Emplyee) is
-- Reads one employee record into OneClerk
-- Pre : None

-- Post : Data are read into record OneClerk
begin -- ReadEmployee

|

‘ Text_10.Put (Item => "ID>"),

‘ My Int_IO.Get (Item => OneClerk.ID);

Text_I0.Put (Item => "Name");

! Text_10.Get (Item => OneClerk Name);

1 Text_10.Put (Item => "Gender (Female or Male)>"),

; GenderType 10.Get (Item => OneClerk. Gender),

1 Text 10.Put (Item => "Number of dependents>");
My Int 10.Get (Item => OneClerk.NumDepend);

‘ Text_10.Put (Item => "Hourly rate>");

1 My Fit_10.Get (Item => OneClerk Rate),

|

|

|

end ReadEmployee;

\
238

Hierarhical Records - Continued

The procedure below is used to input data for an address record.

procedure ReadAddress (Add : out Address) is

-- Reads the fields of one address record

begin -- ReadAddress

Text 10 Put (Item => " Please enter 20 character street address >"),
Text_10.Get (Item => Add.Street),

Text_10.Put (Item => " Please enter 20 character city name >");
Text 10.Get (Item => Add.City),

Text_I10.Put (Item => " Please enter 20 character state name >");
Text_10.Get (Item => Add.State);,

Text 10 Put (Item => " Please enter 5 character ZipCode >"),
Text_10.Get (Item => Add.ZipCode);

end ReadAddress;

239

Hierarhical Records - Continued
procedure ReadNewEmp (NewEmp : out NewEmployee) is
-- Reads a record into record variable NewEmp
-- Uses procedures ReadEmployee, ReadAddress and Dates.Get.
-- Dates.Get is a simple package which allows us to represent calendar dates
-- in a form convinient for reading.
begin -- ReadNewEmp
ReadEmployee (NewEmp.PayData);
ReadAddress (NewEmp.Home);
SimpleDates.Get (NewEmp.StartDate);,

SimpleDates.Get (NewEmp.BirthDate);

end ReadNewEmp;

|
|
240
|
|

Arrays

An array is a data structure used for storage of a collection of items that are all the

same type; that is, all the elements of an array are homogeneous.

Array Type Declaration

type array type is array subscript_type of element_type;

> The identifier array_type describes a collection of array elements; each of which
can store an item of type element_type.

> The subscript_type can be discrete type (either predefined or user-defined). it
may uses arbitrary universal expressions for each bound (e.g. -1..3+5)

> The element_type can be any predefined or user-defined scalar or composite
type.

241

Example Declaration :

The following declaration

type Float_Array is array (1..8) of Float; -- define the type

X : Float_Array -- create a variable

Creates a collection of eight memory cells with the name X in main memory (

usually contiguous allocation) each element of which can hold exactly one Float value.

X(1) X2) X(3) X(4) X(3) X(6) X(7) X(8)

16.0

12.0

6.0

8.0

2.8

12.0

14.0

-56.0|

242

Another Example

The following declaration

type Student_Array is array (1..4) of Student; -- define the type
Student : Student Array -- create a variable

my_Student : array (1..4) of student; -- create a variable with array type definition

Creates a collection of eight memory cells with the name Student in main memory
(usually contiguous allocation) each element of which can hold exactly one Student

record.

George()OOO)
75

Barbara()()()
85

Danny(()OO0
97

Marilyn(_)()()
100

243

More Example Declarations :

The following four groups of statements all produce the same result: namely they

create an array Scores which can hold ten Integers.

1. Scores . array (1..10) of Integer; -- create a variable

2. type Integer Array is array (1..10) of Integer; --define a type

Scores : Integer Array; --create avariable

3. subtype Index is Integer range 1..10; --define a subscript

type Integer Array is array (Index)) of Integer; --define a type
Scores : Integer Array;, --create avariable
4. Scores : Array (Index) of Integer; --create a variable

Array Type Differentation
A, B : array(1..10) of Integer; --A and B are the same type

A : array(1..10) of Integer, --Note A and B are no longer considered

B : array(1..10) of Integer; --to be the same type!!

244

Elementary Array Operations

Old_Scores , New_Scores, Sum : Integer_Array, --creates three array variables
-- each of which can hold

-- then Integers

New_Scores(3) = 25; -- assigns the third element of the array New_Scores
-- the value 25
New_Scores(3) := (25 * 3) +15; -- assigns the third element of the

-- array New_Scores the value of the
-- result of the expression

—(25%3)+15

New_Scores (6) := Old_Scores (3); -- assigns the value contained in the third
-- element of the array Old_Scores to the

-- sixth element of the array New_Scores

Sum(1) := Old_Scores(1) + New_Scores (1), -- stores the sum of the first
-- element of Old_Scores and
-- New_Scores in the first

--element of the array Sum
New_Scores := Old_Scores; -- since both arrays are the same size (and type) this

-- statement copies the contents of the array

-- Old_Scores to the array New_Scores.

245

My Int_IO.Put (Item => Old_Scores (5), Width =>5); -- displays the fifth

My Int 10.Get (Item

=> New_Scores (2),

246

-- element of the array

-- Old_Scores

-- Takes the value provided by the
-- user and places the value in the
-- second element of the array

-- New_Scores.

Array Element Processing

type Float_Array is Array (1..8) of Float;

X : Float_Array :=(16.0, 12.0, 6.0,,8.0,2.5, 12.0, 14.0, -54.5);

i: Integer =6,

My Fit_I0.Put(X(4)),

My Fit_I0.Put(X(1));

My Flt_10.Put(X(1) + 1.0),
My Flt 10.Put(X(i +1));
My Flit_10.Put(X(+1));

--displays the value 8.0
--displays the value 12.0
--displays the value 13.0
--displays the value 14.0
--Illegal index (12) out of range

My Flt I0.Put(X(2 * i - 4)); --displays the value -54.5

X (i)=2X(i+1), --assigns value of X(7) to X(6)
X (i) =X (i)+1.0 --adds 1.0 to the contants of X (6)
X (i-1):=X (i), --assignsvalue X(6)to X(5)

X(i)-1:=X (i), --Illegal assignment

247

Operations of Array Types

AFirst : Denotes the lower bound of the first index range. Its type is the
corresponding index type.
type Table is array (1..100) of Integer;
Table'First =1

A'First (N) : Denotes the lower bound of the N-th. Its type is the corresponding
index type.
type Matrix is array (1..20, 1..30);
Matri'First(1) =1

A'Last : Denotes the upper bound of the first index range. Its type is the
corresponding index type.
type Table is array (1..100) of Integer;
Table'Last = 100

A'Last (N) : Denotes the upper bound of the N-th. Its type is the corresponding
index type.
type Matrix is array (1..20, 1..30);
MatriLast(1) =20
Matrix'Last(2) = 30

A'Range is equivalent to the range A'First .. A'Last except that the prefix A is only

evaluated once.

248

A'Range(n) is equivalent to the range AFirst(N) .. A'Last(N) except that the

prefix A is only evaluated once.

A'Length : Denotes the number of values of the first index

Table'Length = 100

A'Length(N) : Denotes the number of values of the N-th index range
Matrix'Length(2) = 30

249

Aggregate Array Assignment

An array can be field to each filled with values by three methods

> Assignment to each element using individual assoignment statements.

> Copying one array to another

> Using aggregate assignment

Using named association :

New_Scores := (1=> 80, 2=> 56, 3 => 78, 4 => 95),

or equivalently

New_Scores := (80, 56, 78, 95),

> We frequently would like to initialize (or clear) an array, this can be done in
several different ways :

for 1 in 1..10 loop
New_Scores(i) := 0,

end loop;

or equivalently

New_Scores ;= (1..10 => 0);

250

Aggregate Array Assignment

> Suppose we wished to initialize the first 4 elements as above but all the rest to
0:

New_Scores := (1=> 80,2 => 56,3 =>78,4=> 95, others =>0);

3 We wish to initialize the first, third and fifth element to a non-zero value and all
elements to O:

New_Scores := (1=>80, 3 =>78,5=>85, others =>0);

> Finally, we know realize that we can initialize all elements of our array
New_Scores to 0 with the simple statement :

New_Scores := (others =>0),

251

Subscript Examples

Max_Elements : constant Positive := 8;

subtype Index is Positive range 1..Max_Elements;
type Float Array is array (Index) of Float;

X : Float_Array;

Seats Per Row : constant Positive = 50;

type Seating Status Array is array (1.. Seats_Per_Row) of Boolean;
Row 1, Row 2, Row 3 : Seating_ Status_Array;,

Row_ 1(50 := true;

Min_Temp : constant Integer :=-50;

Max_Temp : constant Integer .= 150;

type Temp Frequency Array is array (Min_Temp .. Max_Temp) of Natural
Temp Frequence : Temp Frequency Array ;

subtype Name Length is Positive range 1..15;

type Name Array is array (Name Length) of Character;
First Name, Last Name : Name_ Array;

First Name := (T, 'c, 'a', 'b', '0', 'd', others =>"),

Last Name :=('C', 'r', 'a', 'n|, ‘¢!, thers =>");

252

k

Subscript Examples

subtype Lower Case is Character range 'a'.. 'z,

type Letter Frequency Array is array (Lower_Case) of Natural ;
Letter Frequency : Letter_Frequency_ Array;

Letter Frequency := 73,

type Gender is (male, female),

type Gender Frequency Array is array (Gender) of Natural;
Gender Frequency : Gender_Frequency_Array;
Gender_Frequency(male) := 149,

subtype Plain Letters is Character range'A’.."Z',

type Cipher Alphabet is array (Plain_Letters) of Character ;
Cipher_Code : Cipher_Alphabet := ('F','G’, V', X, BY),
Text_I0.Put (Item => Cipher_Code (D)),

type Car_Maker is (Chrysler, Ford, General Motors),
subtype Dollars is Float range 0.00 .. Float'Last,
Car_Sales := array (Car_Maker) of Dollars;
Car_Sales (Ford) := 23_000_000.00;

My Flt 10 Put (Item => Car_Sales(Ford));

253

Using for Loops with Arrays

We can use a for loop to step through every element of an array for processing.

Size : constant Positive = 10;

subtype Index is Positive range 1. Size,

type Integer Array is array (Index) of Integer;
Squared : Integer Array;

for 1 in 1.Size loop
Square(i) =1%1;

end loop;

Max_Students : constant Positive = 30;
subtype Class is Integer range 1.Max_ Students;
type Test_Score Array is array (Class) of Integer;

2

Testl, Test2, Total Score : Test Score Array;
for Student No in Class'First .. Class'Last loop

Total_Score (Student_No) := Test1(Student_No) + Test2(Student No);

end loop;

254

Arrays as Parameters

> Arrays can be passed as a parameter to a function or a procedure just like any
scalar type we have seen.

> Recall that there are three modes for parameters : in, out and in out.

> An array passed as an actual parameter to a formal in parameter is always
copied into the formal parameter. This can obviously take time and memory.

> Recall also, that a scalar out and in out parameters are copied back into the
calling program just before the subprogram terminates.

> However, for efficiency purposes, Ada allows out and in out parameters of
composite types to be passed by reference (that is, copying an address of the
actual parameter rather than the entire contents).

> Although the method is more efficient, it can create some problems if the
subprogram terminates abnormally because some of the elements of the actual
parameters may have been changed!

255

Case Study 8.7

Problem

You want a program that keeps track of your monthly expenses in each of several
categories. The program should read each expense amount, add it to the appropriate
category total, and print the total expenditure by category. The input data consists of the

category number and amount of each purchase made during the past month.

Analysis

You have selected these budget categories: entertainment, food, clothing, rent,
tuition, insurance, and miscellaneous. Seven separate totals are to be accumulated; each
total can be associated with a different element of a seven element array. The program
must read each expenditure, determine to which category it belongs, and then add that
expenditure to the appropriate array element. When done with all expenditures, the

program can print a table showing each category and its accumulated total.

Data Type

Type Categories is (Entertainment, Food, Clothing, Rent, Tuition,
Insurance, Miscellaneous)
Problem Inputs

each expenditure and its category

Problem Outputs

the array of seven expenditure totals

256

Case Study 8.7

Algorithm (a jazz song written by our vice president).

1. Initialize all category totals to zero.

2. Read each expenditure and add its total to the appropriate category.

3. Display the accumulated total for each category.

257

Case Study 8.7 - The Program

with Text 10,
with Sreen;
procedure HomeBudget is
-- Prints a summary of all expenses by budget category.
MaxExpense : constant Float ;== 10 _000.00, -- max expense amount
type Categories is (Entertainment, Food, Clothing, Rent,
Tuition, Insurance, Miscellaneous),

type Commandsis (E,F, C,R, T, I, M, Q);

package Category IO is new Text 10.Enumeration_IO(Enum =>

Categories);
package Command 10 is new Text 10 Enumeration I0(Enum =>

Commands);
package My Flt 10 is new Text_IO Enumeration I0(Num => Float),
subtype Expenses is Float range 0.00. MaxExpense, -- expense type
type BudgetArray is array (Categories) of Expenses, -- array type
Budget : BudgetArray; -- array of ten totals

procedure Initialize (Budget : out BudgetArray) is
-- Initializes array Budget to all zeros.
-- Pre: None
-- Post: Each array element Budget(Category) is 0.00
begin -- Initialize

Budget := (OTHERS => 0.00);

end Initialize;

258

procedure DisplayTitles is
-- displays a list of expense categories with their abbreviations
WhichRow: Screen.Depth;
begin
Text_10.New_Page,
Text_ 10 New _Line,
Text 10.New_Line;
Text_lo.New_Line,
Text 10 Put(Item =>" Expense Categories"),
Text_10.New_Line;
Text I0.New_Line;
WhichRow = 5;
for C in Commands'First. Commands'Pred(Commands'Last) loop
Screen. MoveCursor (Row => WhichRow, Column => 20),
Command_IO Put(Item => C, Width => 3),
Category 10.Put(Item=>
Categories'Val(CommandsPos(C))),
WhichRow = WhichRow + 1;
end loop;
Screen. MoveCursor(Row => WhichRow, Column => 20),
Command_JO Put(Item => Commands'Last, Width => 3),
Text 10 Put(Item => "when data entry is completed"),

end DisplayTitles;

259

procedure GetCommand(Command: out Commands) is
-- Reads a category command from the terminal
-- Post: a valid Command is returned
begin
loop
begin -- exception handler block
Screen MoveCursor(Row => 18, Column => 15);
Text_10.Put("Please enter first letter
of category > ");
Command_ IO Get(Item => Command);
Screen. MoveCursor(Row => 19, Column => 15);
Text_10.Put("Category accepted, thank you"),
exit;
exception
when Text 10 Data Error =>
Screen.Beep;
Screen.MoveCursor(Row => 19,
Column => 15);
Text_10.Put("Sorry,invalid category! "),
Text_10.Skip Line;

end; -- exception handler block
end loop; -- assert: valid command input received

end GetCommand;

260

procedure GetExpense(Expense: out Expenses) is
-- Reads an expense from the terminal
-- Post: a valid Expense is returned
begin
loop
begin -- exception handler block
Screen. MoveCursor(Row => 20, Column => 15),
Text_10.Put("Please enter expense as
floating point number > ");
My Fit 10.Get(Item => Expense),
Screen.MoveCursor(Row => 21, Column => 15),
Text_IO.Put("Expense accepted, thank you"),
exit;
exception
when Text 10 Data_Error =>
Screen.Beep;
Screen.MoveCursor(Row => 21,
Column => 15),
Text_10.Put("Sorry, invalid expense! "),
Text_10.Skip Line;
end; -- exception handler block
end loop; -- assert: valid expense received

end GetExpense,

261

procedure Post (Budget : in out BudgetArray) is
-- Reads each expenditure amount and adds it to the appropriate
-- element of array Budget.
-- Pre: Each array element Budget(c) is 0.0
-- Post: Each array element Budget(c) is the sum of expense

-- amounts for category c.

Sentinel : constant Commands := Q; -- sentinel command

NextCommand : Commands; -- command

NextCategory : Categories; -- expenditure category

NextExpense : Expenses; -- expenditure amount
begin -- Post

loop

-- invariant:

-- no prior value of NextCommand is Sentinel
GetCommand(Command => NextCommand),
exit when NextCommand = Sentinel;
NextCategory:= Categories'Val

(Commands'Pos(NextCommand)),
GetExpense(Expense => NextExpense);
Budget(NextCategory) := Budget(NextCategory) +
NextExpense;
end loop;

end Post;

262

procedure Report (Budget : IN BudgetArray) is

-- Displays the expenditures in each budget category.

-- Pre: Each array element Budget(c) is assigned a value.

-- Post: Each array element Budget(c) is displayed.
WhichRow: Screen.Depth;

begin -- Report
Screen.ClearScreen,
Screen.MoveCursor(Row => 3, Column => 20);
Text_10 Put(Item => "Category =~ Expense"),
Text I0.New Line, Text 10.New_Line;
WhichRow = 5;

for Category in Categories loop
Screen. MoveCursor(Row => WhichRow, Column => 20);
Category_I10.Put(Item => Category, Width=>13);
My Flt_IO Put(Item=>Budget(Category),
Fore=>7, Aft=>2, Exp=>0),
WhichRow = WhichRow + 1,

end loop;

Screen.MoveCursor(Row => 23,Column => 1);

end Report;

263

begin -- HomeBudget
-- prepare terminal screen for data entry
DisplayTitles;
-- Initialize array Budget to all zeros.
Initialize (Budget);
-- Read and process each expenditure.
Post (Budget);
-- Print the expenditures in each category.
Report (Budget),

end HomeBudget;

264

Strings in Ada
Ada's string type is actually defined in Standard as follos :
type String is array (Positive range <>) of Character;

type Wide_String is array (Positive range <>) of Wide_Character;

making strings just a special case of unconstrained arrays (we'll see the more

general case later).

> A string variable is in fact an array of characters, with a subscript range that
must be a subtype of Positive.

> String variables can be compared and assigned like other Ada variables, but
their lengths must match exactly.

> It is possible to assign or refer to a part, or slice, of a string.

> Strings can be concateneted, or "pasted together" to form longer ones.

> Package Ada Strings and its child packages Maps, Fixed, Bounded, Constants,
Unbounded contain predefined routines for String types.

> Package Ada.Strings also contains child packages Wide Maps,
Wide Constants, Wide Fixed, Wide Bounded, Wide_Unbounded which handle
predefined routines for Wide_String types.

265

Declaring and Using String Variables

The declarations
NameSize : constant Positive =11,
FirstName : String (1.. NameSize),
LastName : String (1.. NameSize),

allocate storage for two string variables : FirstName and LastName. String
variables FirstName and LastName can store 11 characters each (subscript range 1..11).
In general, a string variable of type String (1..N) can be used to store a string of up to N

characters.

FirstName = "Johnny";
will raise Constraint_Error but

",
>

FirstName := "Johnny
FirstName(1..6):="Johnny";

will not raise Constriant_Error

266

Declaring and Using String Variables

Given the declarations
FirstNameLength : Natural,
LastNameLength : Natural,

the statements

Text_I0.Put (Item => "Enter your first name followed by CR, ");
Text_10.Get (Item => FirstName, Last => FirstNameLength),
Text_10.Put (Item => "Enter your name name followed by CR, "),
Text_10.Get (Item => LastName, Last => LastNameLength);

can be used to enter string values into the string variables FirstName and
LastName. Up to 11 characters can be stored in FirstName and LastName. If the data
characters Johnny are entered after the first prompt and the data characters Appleseed are

entered after the second prompt, string FirstName is defined as :

Mm @ 6 @ ¢ 6 0O 6 © aq ay

J o h n n y ? ? ? ? ?

and string LastName is defined as

m @ & @& 6 6 0 ¢ © a0 an
A p p 1 e S e e d ? ?

The variables FirstNameLength and LastNamelLength will contain 5 and 9,

respectively.

267

Declaring and Using String Variables

The statement

Text 10 .Put (Item => FirstName (1.. FirstNameLength));
displays the string Johnny.

Given the declarations
WholeNameLength : Natural;
WholeName - String (1..24),

the statements
WholeNameLength = FirstNameLength + LastNameLength +2;
WholeName(1.. LastNameLength) ;= LastName(1..LastNameLength);
WholeName(LastNameLength+1 .. LastNameLength +2) =", ";
WholeName(LastNameLength+3 .. WholeNameLength) :=

FirstName (1 .. FirstNameLength);

Text_IO.Put (Item => WholeName(1.. WholeNameLength)),

will store in WholeName, and display :

Appleseed, Johnny

268

String Concatenation

The string concatenation operator &, applied to two strings SI and S2,
concatenetes, or "pastes together" its two arguments. The statement
S3:=S1 & S2;
stores in S3 the concatenation of S1 and S2. For the assignment to be valid, the
length of S3 still must match the sum of the lengths of S1 and S2; if it does not,

Constraint_Error will be raised, as usual.

WholeName can be created more simply using concatenetion:

WholeNameLength := FirstNameLength + LastNameLength +2;
WholeName(1.. WholeNameLength) := LastName(1..LastNameLength)
& " " & FirstName (1 .. FirstNameLength);

The result of a concatenation can also be passed directly as a parameter, for
example to Text 10.Put :
Text _Io.Put (Item => LastName(1..LastNameLength)
& ", " & FirstName (1 .. FirstNameLength)),

Concatenation is actually defined for all 1-dimensional unconstrained array types,

but is most often used with strings.

269

Case Study - Cryptogram Generator

with Text 10,

procedure Cryptogram is

subtype Letter is Character range 'A'..'Z",
type CodeArray is array (Letter) of Character;
Code : CodeArray; -- array of code symbols

function Cap (InChar : Character) return Character is

-- returns an upper-case letter
-- Pre: InChar is defined
-- Post: if InChar is a lower-case letter, returns its upper-case

-- equivalent; otherwise, returns InChar unmodified

begin -- Cap

if InChar in 'a’.."z' then
return Character'Val(Character’Pos(InChar)
- Character'’Pos('a’) + Character’Pos('A")),
else
return InChar;
end if;

end Cap,

270

procedure ReadCode (Code : out CodeArray) is
-- Reads in the code symbol for each letter.

-- Pre : None

-- Post: 26 code symbols are read into array Code.
begin -- ReadCode
Text_I0.Put(Item => "Enter a code symbol under each letter.");
Text 10 New_Line;
Text_IO.Put(Item=>"ABCDEFGHIJKLMNOPQRSTUVWXYZ"),
Text 10.New_Line,
-- Read each code symbol into array Code.
for NextLetter in Letter loop
Text_10.Get(Item => Code(NextLetter)),
end loop;

Text 10.Skip Line;

end ReadCode;

271

procedure Encrypt (Code : CodeArray) is

-- Reads a plaintext (unencoded) message and displays its coded version.
-- Pre : The code for letter i is saved in Code(1).
-- Post: Displays the encoded message
subtype Line is String(1..80);
PlainText : Line;
CodedText : Line;
HowLong : Natural;
begin -- Encrypt

Text 10 Put(Item => "Enter each character of your message."),
Text 10.New_Line,
Text_10.Put(Item => "No more than 80 characters, please."),
Text 10 New_Line,
Text 10 Put(Item => "Enter a CR after your message.");
Text_ 10 .New Line;
Text 10.Get_Line (Item => PlainText, Last => HowLong),
for WhichChar in 1. HowLong loop
if Cap(PlainText(WhichChar)) in Letter then
CodedText(WhichChar).=
Code(Cap(PlainText(WhichChar)));
else
CodedText(WhichChar) := PlainText(WhichChar);
end if;

end loop;

272

Text_10.Put (Item => CodedText(1..HowLong)),
Text 10.New_Line,
end Encrypt;

begin -- Cryptogram
-- Read in the code symbol for each letter.
ReadCode (Code);
-- Read each character and print the cryptogram
Encrypt (Code),

end Cryptogram,

273

Searching an Array

Algorithm

1. Start with the first array element.

2. while the current element does not match the target and the current

element is not the last element loop.

3. Advance to the next element end loop,

4. if the current element matches the target then return its subscript else

return zero.

274

Searching an Array

function Search (Scores: ScoreArray; ClassSize: ClassRange;
Target: ScoreRange) return ClassRange;

-- Searches for Target in array Scores

—- Pre : ClassSize and subarray Scores(1..ClassSize) are defined

-- Post: Returns the subscript of Target if found,

-- otherwise, returns 0

CurrentScore: ClassIndex; -- array subscript

begin -- Search
-- Compare each value in Scores to Target until done
CurrentScore = 1; -- Start with the first record
while (Scores(CurrentScore) <> Target) and
(CurrentScore <= ClassSize) loop
-~ invariant:
-- CurrentScore <= ClassSize + 1 and
-- no prior array element was Target
CurrentScore := CurrentScore + 1; -- advance to next score
end loop;
-- assertion: Target is found or last element is reached.
-- Define the function result.
if Scores(CurrentScore) = Target then
return CurrentScore,
else
return O;
end if;

end Search;

275

Sorting an Array

Algorithm for Selection Sort

1. for Position ToFill in reverse 2..N loop

2. Find the largest element in subarray 1..PositionToFill.

3. if the largest element is not at subscript PositionToFill then

Exchange the largest element with the one at subscript PositionToFill.

end if

end loop

276

Sorting an Array

with Text IO,

procedure SortScores is

-- Test program for procedure SelectSort

-- Sorts and displays an array of test scores

-- The array is initialized with eleven non-zero scores.
MaxSize : constant Positive := 250;
MaxScore : constant Positive := 100;
subtype ClassIndex is Positive range 1. MaxSize;
subtype ClassRange is Natural range 0. MaxSize,
subtype ScoreRange is Natural range 0. MaxScore;
type ScoreArray is array (ClassIndex) of ScoreRange;
Scores : ScoreArray;
ClassSize : ClassRange;
package My Int_IO is new Integer_IO (Num => Inteher);
procedure Exchange(Scorel, Score2: in out ScoreRange) is
-- exchanges two values of type ScoreRange
-- Pre: Scorel and Score?2 are defined
-- Post: the values of Scorel and Score2 are interchanged

TempScore: ScoreRange;

begin
TempScore := Scorel;
Scorel = Score2;
Score2 = TempScore;

end Exchange;

277

procedure SelectSort(Scores: in out ScoreArray;,

ClassSize: in ClassRange) is

IndexOfMax: ClassRange;

begin

for PositionToFill in reverse 2..ClassSize loop
-- Find the element in subarray 1..PositionToFill
-- with largest Score
IndexOfMax = PositionToFill;
for ItemToCompare in reverse 1..PositionToFill - 1 leop
if Scores(ItemToCompare) > Scores(IndexOfMax) then
IndexOfMax = ItemToCompare,
end if;

end loop;

-- assert: element at IndexOfMax is largest in subarray
if IndexOfMax /= PositionToFill then
Exchange(Scores(PositionToFill), Scores(IndexOfMax));
end if;

end loop;

end SelectSort;

278

procedure DisplayScores(Scores: ScoreArray; ClassSize: ClassRange) is
begin
for I in 1..ClassSize loop
My Int_I0 Put(Item => I, Width => 3),
Text 10 Put(Item=>" "),
My Int_IO.Put(Item => Scores(I), Width => 4);
Text 10 New_Line,

end loop;

end DisplayScores;

begin -- SortScores
ClassSize := 11,
Scores = (75, 25, 100, 62, 79, 80, 85, 75, 91, 67, 68, OTHERS => 0);
Text_10.Put(Item => "Original Test Array:");
Text_I0.New_Line;
Text_10.New_Line;

DisplayScores(Scores => Scores, ClassSize => ClassSize);
Text_1I0.New_Line,

SelectSort(Scores => Scores, ClassSize => ClassSize),
Text 10.New_Line,

Text_10.Put(Item => "Sorted Test Array:"),

Text 10.New_Line, Text_I0.New_Line;
DisplayScores(Scores => Scores, ClassSize => ClassSize),
Text 10 New_Line;

end SortScores;

279

Case Study- Sorting an array of Records

with Text 10,

with SimpleDates;

procedure SortScoreFile is

-- Sorts and displays an array of test score records

-- The records are read from a file SCORES DAT
MaxSize : CONSTANT Positive := 250,
MaxScore : CONSTANT Positive := 100;
subtype StudentName is String(1..20);
subtype ClassIndex is Positive range 1..MaxSize;
subtype ClassRange is Natural range 0. MaxSize;

subtype ScoreRange is Natural range 0. MaxScore;

type ScoreRecord is
record
Name: StudentName;
Score: ScoreRange,

end record;

type ScoreArray is array (ClassIndex) of ScoreRecord;
package My_Int IO is new Integer 10(Num => Integer)
Scores : ScoreArray,

ClassSize : ClassRange;

280

2

procedure GetRecords(Scores: out ScoreArray,

ClassSize: out ClassRange) is
TestScores: Text_10.File_Type; -- program variable naming the
--input file
TempSize: ClassRange, TempRecord: ScoreRecord;

begin -- GetRecords

-- Open the file and associate it with the file variable name
Text 10.0pen (File => TestScores, Mode => Text_IO.In_File,
Name => "SCORES DAT"),
-- Read each data item
-- and store it in the appropriate element of Scores
TempSize = 0, -- initial class size
-- Read each array element until done.
while (not Text IO .End_Of File(TestScores)) and
(TempSize < MaxSize) loop
-- invariant:
-- Records remain in the file and
-- TempSize <= MaxSize
Text 10.Get(File => TestScores,
Item => TempRecord Name),
My Int _10.Get(File => TestScores,
Item => TempRecord.Score);
TempSize := TempSize + 1,
Scores(TempSize) .= TempRecord, -- Save the score

end loop;

281

-- assert:

-- End of file reached or

-- TempSize is MaxSize

if TempSize = MaxSize then
Text [0 Put(Item => "Array is filled."),
Text 1I0.New_Line;

end if;

ClassSize .= TempSize;

end GetRecords;

procedure Exchange(Studentl, Student2: in out ScoreRecord) is
TempRecord: ScoreRecord,

begin
TempRecord := Studentl,
Student1 ;= Student2;

Student2 ;= TempRecord;

end Exchange,

282

procedure SelectSort(Scores: in out ScoreArray;
ClassSize: in ClassRange) is
IndexOfMax: ClassRange;
begin

for PositionToFill in reverse 2..ClassSize loop

-- Find the element in subarray 1. PositionToFill with largest Score

IndexOfMax := PositionToFill;
for ItemToCompare in reverse
1..PositionToFill-1 loop
if Scores(ItemToCompare).Score >
Scores(IndexOfMax).Score then
IndexOfMax = ItemToCompare;
end if;
end loop;
-- assert: element at IndexOfMax is largest in subarry
if IndexOfMax /= PositionToFill then
Exchange(Scores(PositionToFill),Scores(IndexOfMax)),
end if;

end loop;

end SelectSort;

283

procedure DisplayScores(Scores: ScoreArray; ClassSize: ClassRange) is
begin
for Iin 1..ClassSize loop
My Int 10 Put(Item => I, Width => 3);
Text 10 Put(Item=>" "),
Text _10.Put(Item => Scores(I).Name),
My Int_IO.Put(Item => Scores(I).Score, Width => 4);
Text_ 10.New_Line;
end loop;
end DisplayScores;
begin -- SortScoreFile
Text 10 Put(ltem => "Today is "),
SimpleDates Put(Item => SimpleDates. Today), Text 10.New_Line;
GetRecords(Scores => Scores, ClassSize => ClassSize);
Text 10 Put(Item => "Original Test File:");
Text 10.New_Line;
Text 10.New Line;
DisplayScores(Scores => Scores, ClassSize => ClassSize);
SelectSort(Scores => Scores, ClassSize => ClassSize);
Text_10.New_Line;
Text_10.Put(Item => "Sorted Test File:"),
Text 10.New Line;
Text 10.New_Line;
DisplayScores(Scores => Scores, ClassSize => ClassSize),
Text_10.New_Line;

end SortScoreFile;

284

Problem Solving Using Abstraction

The strategy of decomposing a problem into smaller sub-problems which are more

manageable and thus more easily solved is known as the "divide and conquer strategy"

Procedural abstraction embodies the concept of "divide and conquer” by focusing
on the abstract solution of smaller problems. This is, one separate out what is to be

achieved by the procedure from the details of how the procedure actually works.

The abstraction notion of what a procedure is expected to do then serves as the

specification for the implementation of the procedure.

We have already seen the stepwise refinement process for building a program,
which in essence continually refines our notion of what a program is to until we actually

develop the code that implements these notion.
A program then, as we have seen and experienced in our earlier projects, is best

built incrementally. There are two primary strategies for accomplishing this (1) Top-down

design and (2) Bottom-up design

285

Problem Solving Using Abstraction
In top-down program development, you code at least a substantial part of the main
program, and then test the overall flow using limited version of your procedures that are

referred to as program stubs.

In the bottom up process, you write the procedure one at a time and test each one

using a very simple "test harness"” whose only purpose is to test and debug the procedure.

Generally, you will find that a programmer uses both strategies in development of

large programs.

286

Nested Procedures and Scoping Rules

> Ada is a block structured language that permits one subprogram to be nested

within another

Flat Block Structure

declaration of x

declaration of y

declaration of z

scope of declaration
of x

scope of declaration
ofy

scope of declaration
of z

Nested Block Structure

declaration of x

scope of declaration

declaration of y

declaration of z

of x

scope of declaration
ofy

scope of declaration

T— ofz

287

Nested Procedures and Scoping Rules

> It is possible for the same identifier to be declared in different blocks.

> If the same identifier is declared in two nested blocks : the outer declaration is
said to be invisible or to be hidden by the inner declaration.

declaration of x

declaration of y |g

¢ scope of .outer
declaration of x

scope of inner

declaration of y

288

Nested Procedures and Scoping Rules

> Since all procedures are nested within the main program block, an identifier
declared in the main program may be referenced anywhere in the program.
Variables declared in the main program are referred to as global variables.

> It is generally not a good idea to reference global variables in the body of a
subprogram because (1) it may produce undesirable side effects and (2) it, in
effect couples the subprogram to the main program (that is - it is counter to the
concept of module independence).

> An identifier may be declared only once in a given procedure ; however, the
same identifier may be declared in more than one procedure (€.g. in the
declaration area or in the formal parameter list).

> If an identifier is not declared locally, then a declaration in an outer block
containing the point of reference is used.

289

Nested Procedures - Example

with Text 10;

procedure TestTriangle is

procedure Triangle (NumRows : IN Natural) is

-- Prints a triangle by displaying lines of increasing length.
-- The number of lines is determined by NumRows.

-- Pre: NumRows is assigned a value.

-- Post: A triangle is displayed.

-- Requirements: Calls procedure PrintLine to display each line.

procedure PrintLine (NumStars : IN Natural) is
-- Prints a row of asterisks. The number of
-- asterisks printed is determined by NumStars.
-- Pre: NumStars is assigned a value.
-- Post: A row of asterisks is displayed.

Star : CONSTANT Character :='*'; -- symbol being printed
begin -- PrintLine
-- Print a row of asterisks

for CountStar in 1 .. NumStars loop

Text 10 .Put(Item => Star);
end loop;
Text IO.New Line;

end PrintLine;

290

begin -- Triangle
-- Print lines of increasing length
for Row IN 1 .. NumRows loop
PrintLine (NumStars => Row);
end loop;

end Triangle;

begin -- TestTriangle

Triangle(NumRows => 6),

end TestTriangle,

291

Text Files

> A text file is a collection of characters stored under the same name on disk.

> In the Text_IO package a predefined type is provided namely :

type File Type is limited private

> The end of each line of a text file is terminated by a special character called the
end-of-line character <eol> (Enter)

> The end of a text file is also terminated by a special character called the end of
file character <eof> (Ctrl-d)

> Although a text file may normally contain characters it can also store numerical
data:

Example

1234 345 <eol>
999 -17<eol><eof>

292

Text Files

> Two useful functions provided by the Text_IO package are the End_of Line
function and the End_of File function.

> Text_10.End_of Line (filename)- returns a value of true if the text character in
the file is <eol>

(note : omission of the file name assumes the file referred to is

Text _10.Standard Input).

3> Text 10.End of File (filename)- returns a value of true if the next character in
the file is <eof>. If an attempt is made to read the file again after the function
returns true then an End_Error exception is raised.

(note : omission of the file name assumes the file referred to is
Text_10.Standard_Input).

> A text file must be declared just like any other variable in an Ada program :

InData : Text 10O.File Type;
OutData : Text_10.File_Type;

293

Text Files
At any given time, a file can be used for either input, output or append but not
simultaneously.

> If file is to be used for input the file must, of course, exist and to be opened for
reading. The procedure call

Text _10.Open(File => InData, Mode => Txet_10.In_File,
Name =>"Scores.Dat");
prepares the file InData for reading by moving the file pointer to the beginning of
the file and associating the variable identifier InData with the DOS file Score. Dat.

> If a file is to be used for output the file must be first created. That is the
procedure call

Text 10.Create(File => OutData, Mode => Txet_10.0ut_File,
Name =>"Test.Out"),
prepares the file OutData for output. If a file by that name already exists it is
deleted and a new one of the same name is created, otherwise a just a new empty

file by that name is created.

> If we wish to add new text at the end of an existng file then we use the
Append_File mode

Text_10.Open(File => InData, Mode => Txet 10.Append File,
Name =>"Scores Dat");

> Reading and writing a file users the same familiar get and put procedures that
we are already accustomed to using : except a new parameter is added to the
call.

Example
Text_10.Get(File => InData, Item => NextCh) -- gets NextCh from the file
Text_10.Put(File => OutData, Item => NextCh) -- writes NextCh to the file

294

Sample Program

with Text 10,

procedure CopyFile is
-- program copies its input file TEST.DAT into its output file TEST.OUT
-- then closes TEST.OUT, re-opens it for input,
-- and displays its contents on the screen.
InData : Text 10.File Type,
OutData : Text 10 File_Type;
NextCh : Character;
begin -- CopyFile

Text_10.0Open(File=>InData,Mode=>Text_IO.In_File,
Name=>"TEST.DAT"),

Text_I0.Create(File=>OutData,Mode=>Text_]0.Out_File,
Name=>"TEST.OUT"),

while not Text 10.End_of File(File => InData) loop

while not Text 10 End_of Line(File => InData) loop

Text_IO.Get(File => InData, Item => NextCh);
Text_I0.Put(File => QutData, Item => NextCh),

end loop,

Text _10.Skip Line(File => InData);

Text 10 New_Line(File => OutData),
end loop;

Text_10.Close(File => InData);

\
;
| 295
|
|

Text_10.Close(File => QutData);
Text_10.0Open(File=>InData, Mode=>Text _10.In_File,
Name=>"TEST.OUT"),
while not Text 10 End of File(File => InData) loop
while not Text 10.End_of Line(File => InData) loop
Text_10.Get(File => InData, Item => NextCh);
Text 10 Put(Item => NextCh);
end loop;
Text 10.Skip Line(File => InData);
Text 10.New_Line;

end loop,

Text 10.Close(File => InData),
exception
when Text 10 Name Error =>
Text 10 Put(Item => "File TEST .DAT doesn't exist in this
directory!");
Text 10.New_Line;
end CopyFile;

296

Case Study

with Text 10,

with Screen,

procedure Histogram is

-- Plots a histogram on the screen consisting of vertical bars.

-- Each bar represents the frequency of occurrence of a given

-- alphabet letter in the input file.

-- The input file is assumed to be Standard_Input; use input redirection

-- if you wish to use a disk file instead.

subtype UpperCase is Character range 'A’.."Z';
subtype LowerCase is Character range 'a'..'z';
type List is array(Character range <>) of integer;
Uppers : List(UpperCase);,

Lowers : List(LowerCase);
NextCh : Character;
Scale : Natural, MaxCount : Natural := 0;

WhichCol : Screen Width;

package My Int IO is new Integer IO(Num => Integer),

297

procedure Plot(WhichCol : Screen Width;
BottomRow : Screen.Depth;
HowMany : Screen Depth,
WhichChar : Character) is

-- draws one vertical bar on the screen

-- Pre: WhichCol, BottomRow, HowMany, and WhichChar are defined
-- Post: draws a bar in column WhichCol, using character WhichChar
-- to do the plotting. The bottom of the bar is given by

-- BottomRow; the bar contains HowMany characters.
begin -- Plot
for Count IN 0 .. Howmany - 1 loop
Screen. MoveCursor(Column => WhichCol,
Row => BottomRow - Count);
Text 10 Put(Item => WhichChar),

end loop,

end Plot;

298

begin -- Histogram

-- initialize letter-counter arrays

Uppers = (others => 0);,

Lowers := (others => 0),

-- read each character in the file; update letter counters
while not Text 10.End_Of File loop
while not Text I0.End_Of Line loop
Text_10.Get(NextCh);,
case NextCh is
when UpperCase =>
Uppers(NextCh) := Uppers(NextCh) + 1;
if Uppers(NextCh) > MaxCount then
MaxCount := Uppers(NextCh),
end if;
when LowerCase =>
Lowers(NextCh) := Lowers(NextCh) + 1,
if Lowers(NextCh) > MaxCount then
MaxCount := Lowers(NextCh);
end if;
when others =>
null;

end case;

end loop;

299

Text_10.Skip Line;
end loop;
Scale ;= MaxCount / 20 + 1,
Screen.ClearScreen; Screen MoveCursor(Row => 1, Column => 15);
Text_I10.Put(Item => "Scale: 1 star =");
My Int_10.Put(Item => Scale, Width => 1),
Text _10.Put(Item => " occurrences");,
Screen.MoveCursor(Row => 22, Column => 4);

Text_10.Put(Item=>

"abcdefghijklmnopqrstuvwxyzZABCDEFGHIJKLMNOPQRSTUVWXYZ"),

WhichCol :=4;

for C in LowerCase loop
if Lowers(c) /= 0 then
Plot(WhichCol, 21, Lowers(C) / scale + 1, "*');
end if,
WhichCol := WhichCol + 1;

end loop;

for C in UpperCase loop
if Uppers(C) /=0 then
Plot(WhichCol, 21, Uppers(C) / scale + 1, '*');
end if;
WhichCol := WhichCol + 1;
end loop,

Screen. MoveCursor(Row => 24, Column => 1),

end Histogram;

300

Multidimensional Arrays

So far we have looked only at one dimensional arrays, however, we frequently deal

with abstract concept of multidimensional arrays

> a chessboard, a Tic_Tac_Toe board, a matrix, Rubik's cube, a map, etc.

In Ada we declare a miltidimensional array in such the same fashion as we do a one

dimensional array :

type MultArray is array (subscriptl, .. ., subscriptN) of element_type;

Example :

type GameSymbol is (X, O, E),
type BoardArray is array (1..3,1..3) of GameSymbol;

TicTacToe : BoardArray;,

type YearByMonth is array (1900 .. 19999, Month) of Real;
type Election is array (Candidate , Precinct) of Integer;

type VideoArray is array (1..1024,1..1024) of Pixels;

type Buffer is array (1 .. MaxRow, 1 .. MaxCol) of Character;

301

Manipulation of Two - Dimensional Arrays

Columns
Index 1 2 3 4
1 75 62 58 76
2 86 92 90 95
Rows
3 78 84 87 89
4 60 72 58 87
5 98 94 93 99

The Two Dimensional array Scores

To print out all the values in the first row :
for Columnin 1 .. 4 leop
Text_10.Put (Item => Scores (1.. Column), Width => 4);
end loop;
To print out all the values in the first column :
for Columnin 1 .. 5 leop

Text_I10.Put (Item => Scores (Row .. 1), Width => 4);

end loop;

302

Manipulation of Two - Dimensional Arrays

» To sum up all the values in the first row :
Sum :=0;
for Columnin 1 .. 4 loop
Sum := Sum + Scores(1 .. Column),

end loop;

> To sum up all the values in the first column :
Sum =0,
for Rowin 1 .. 5 loop
Sum := Sum + Scores(Row .. 1);

end loop,

> To sum up all the values in the array :
Sum = 0;
for Rowin 1 .. 5 loop
for Column in 1 .. 4 loop
Sum := Sum + Scores(Row
end loop;

end loop,

303

.. Column);

Multidimensional Array Types

type Tableis array (1 .. 5,1 .. 5) of Integer;
Jack, Jill : Table;

> Indexing in arrays

Jack (1, 1) =10,

Jack (1, 2) ;= Jack (1, 1),

Index = 3;

Jack (Index, Index) .= 5,

Jack (Index -1, 5) :=Jack (1, 1) + 5;
Jack (4,3) =2 * Jack (3, 3) - 3;

> Array aggregates
Jack :==((1,2,3,4,5),
(2,2,22,2),
(3,3,3,3,3),
(4,4,4,4,4),

(5,5,5,5,5));

Jack = (3=>(1,2,3,4,5),
2=>(2,2,2,22),
1=>(3,3,3,3,3),
4=>(4,4,4,4,4),
5=>(5,5,5,5,9)),

304

Jack ;= Table' (3 =>(1,2,3,4,5),
2=>(2,2,2,2,2),
others => (3,3,3,3,3));

Jack ;= Table' (3 =>(1,2,3,4,5),
2=>(2,2,2,2,2),

others => (3,3, others => 0));

Jack := Table' (others => (others => 0));,

305

Abstract Data Types (ADT's)
What is an Abstract Data Type ?

> An ADT is just a formal name for what Ada calls a type : a set of values and a
set of operations that are appropriately applied to those values.

> A program that uses and ADT is called a client program.

> A client program can declare and manipulate objects of the data type and use
the data type's operators without knowing the details of the internal
representation of the data type or the implementation of the operators (in other
words the details are hidden),

How are they constructed?
> ADT's are built using Ada packages.

> Constructor - creates an object of the specified type by putting the necessary
parts together.

> Selector - Selects a particular component of the object.
> Inquiry - Ask whether the object has a particular property (e.g. empty).

> Input/Output - Provides for input and output of the object.

306

Private Types

A private type is provided by a package, in order to give clients exactly the
operations desired by the designer, and no others. Given a private type, a client can :

> declare variables of that type.

> declare records or arrays that have fields or components of that type.

> use the universal assignment (:=) to copy a value of one variable to another.

> use the universal assignment (=, /=) to test variables for equality and
inequality.

> use any other operations provided in the package specification.

A client cannot do anything else with objects of a private type >

> no field selection.

5> no arithmetic (even if the private type is numeric).

> no array indexing.

Example

type <Name> is private,

307

Abstract Types and Subprograms

> An abstract type is a tagged type (record) intended for use as a parent type for
type extensions, but which is not allowed to have objects of its own.

Example
package P is
type T is abstract tagged null record,

end P,

> An abstract subprogram is a subprogram, which has no body but is intended to
be overridden at some point when it is inherited. It can not be called directly or
indirectly.

Example

package P is
type T is abstract tagged null record; -- abstract type
procedure Op (X : T) is abstract; -- abstract subprogram
or procedure Op (X : T)is <>; -- an other declaration of an

-- abstract subprogram

end P;

> An abstract type is not allowed to have an invisible abstract operation since
otherwise it could not be overridden.

(Note :More about abstract types later in Object Oriented programming with Ada.)

308

Case Study : Helping Your Cousin with Fractions

Problem

Your cousin in junior high school is studying fractions and is interested in whether
a computer can "do fractions". You wish to show your cousin that a computer can indeed

handle rational numbers.

Analysis

To be useful, the problem solution should provide for creating, reading, and

displaying a rational number, for extracting the numerator and denominator parts.

The package should also contain operations for performing rational arithmetic (

addition, subtraction, multiplication, and division).

It is also useful to provide operations for comparing two rationals : =, /=, <, <=,
and >=_ This is a problem for which an abstract data type is a good solution, since an ADT
provides a type (in this case Rational) and a set of operations applicable to that type.

There should also be operations to read and display rational values.

309

Case Study : Cont'd

Design

We will construct an abstract data type package to represent the data structure for

a rational number with operators for each of the tasks listed above.

We will represent each rational quantity as a record with numerators and
denominator fields, and we will make the rational type private so as to prevent client

programs from directly manipulating the fields.

We can use Ada's predefined assignment, equality, and inequality for rationals, but

this is meaningful only if we store all rationals in lowest terms.

To understand why, remember that Ada's predefined equality compares two
records by checking whether each field of one record is equal to the corresponding field of

the other. If each comparison yields a true result, the overall equality is true.

If our design did not require rationals to be in lowest terms, then the equality
check would return incorrect results; for example, 2/3 = 6/9 is true in the "real world" but
would be false in our system. However, if 6/9 were never actually stored in our system,

but replaced with its reduced equivalent, 2/3, this problem could not arise.

310

Case Study : Cont'd

package Rationals is

-- Specification of the abstract data type for representing

-- and manipulating rational numbers.

type Rational is private;

--Operators

function "/" (X : Integer; Y : Integer) return Rational;

-- constructor: returns a rational number in lowest terms
--Pre: X and Y are defined -- Post: returns a rational number
-- IfY >0, returns Reduce(X,Y)

-- IfY <0, returns Reduce(-X,-Y)

-- IfY =0, raises ZeroDenominator

ZeroDenominator: exception;

function Numer (R : Rational) return Integer;

function Denom (R : Rational) return Positive;

-- selectors: return the numerator and denominator of a rational number R

-- Pre: R is defined
-- Post: Numer returns the numerator of R; Denom returns the

-- denominator

311

procedure Get (Item : out Rational);
-- Reads a pair of integer values into rational number Item.

-- Pre : none

-- Post: The first integer number read is the numerator of Item

-- the second integer number is the denominator of Item.

-~ "/["1s called to produce a rational in reduced form.

procedure Put (Item : IN Rational);
-- Displays rational number Item.
-- Pre : Item is assigned a value.

-- Post: displays the numerator and denominator of Item.

function "+"(R1 : Rational; R2 : Rational) return Rational;
function "-"(R1 : Rational; R2 : Rational) return Rational;
function "*"(R1 : Rational; R2 : Rational) return Rational;
function "/"(R1 : Rational; R2 : Rational) return Rational;
-- constructors: return the rational sum, difference, product,
-- and quotient of rational numbers R1 and B

-- Pre : R1 and R2 are assigned values

-- Post: return the rational sum, difference, product, and

-- quotient of R1 and R2.

312

>

function "<" (R1 : Rational; R2 : Rational) return Boolean;

function ">" (R1 : Rational; R2 : Rational) return Boolean;,

function "<="(R1 : Rational; R2 : Rational) return Boolean,

function ">="(R1 : Rational; R2 : Rational) return Boolean;

-- inquiry operators: comparison of two rational numbers

-- Pre : R1 and R2 are assigned values

-- Post: return R1 <R2, R1 > R2, R1 <= R2, and R1 >= R2, respectively

private

-- R1 record of type Rational consists of a pair of integer values
-- such that the first number represents the numerator of a rational

-- number and the second number represents the denominator.

type Rational is
record
Numerator : Integer := 0;
Denominator : Positive ;= 1;
end record; -- Rational

end Rationals;

313

Case Study : Con'd

with Text 10;

package body Rationals is

-- Body of the abstract data type for representing

-- and manipulating rational numbers.

-- local function GCD

package My Int IO is new Integer 10 (Num => Integer);

function GCD(M: Positive; N: Positive) return Positive is
-- finds the greatest common divisor of M and N
-- Pre: M and N are defined
-- Post: returns the GCD of M and N, by Euclid's Algorithm
R : Natural,
TempM: Positive,

TempN: Positive;

begin -- GCD
TempM =M;
TempN = N;

R := TempM REM TempN;
while R /=0 loop
TempM := TempN;
TempN =R,
R = TempM REM TempN;

2

end loop;
return TempN;

|
\
end GCD;
|
|
|

314

-- Operators

function "/" (X : Integer; Y : Integer) return Rational is
-- constructor: returns a rational number in lowest terms
--Pre: X and Y are defined

-- Post: returns a rational number

-- IfY >0, returns Reduce(X,Y)

- IfY <0, returns Reduce(-X,-Y)

-- IfY = 0, raises ZeroDenominator

G: Positive;

begin

if Y =0 then
raise ZeroDenominator;
end if;
if X =0 then
return (Numerator => 0, Denominator => 1),
end if,
G := GCD(abs X, abs Y),
if Y >0 then
return (Numerator => X/G, Denominator => Y/G),
else
return (Numerator => (-X)/G, Denominator => (-Y)/G);,

end if;

end "/";

315

function Numer (R : Rational) return Integer is
begin
return R Numerator;

end Numer;

function Denom (R : Rational) return Positive is
begin
return R Denominator;

end Denom;

-- selectors: return the numerator and denominator of a rational number R
-- Pre: R is defined
-- Post: Numer returns the numerator of R; Denom
--returns the denominator
procedure Get (Item : out Rational) is
-- Reads a pair of integer values into rational number Item.
-- Pre : none
-- Post: The first integer number read is the numerator of Item;
-- the second integer number is the denominator of Item.
-- "/" is called to produce a rational in reduced form.
N: Integer; D: Integer;
begin -- Get
My Int 10.Get(Item => N);
My Int 10.Get(Item => D),
Item := N/D;
end Get,

316

procedure Put (Item : in Rational) is
-- Displays rational number Item.
-- Pre ; Item is assigned a value.
-- Post: displays the numerator and denominator of Item.
begin -- Put
My _Int_IO.Put(Item => Numer(Item), Width => 1);
Text_10.Put(Item => '),
My _Int_IO Put(Item => Denom(Item), Width => 1);

end Put;

function "+"(R1 : Rational; R2 : Rational) return Rational is
N: Integer;
D: Positive,
begin
N := Numer(R1) * Denom(R2) + Numer(R2) * Denom(R1);
D := Denom(R1) * Denom(R2);,
return N/D; -- compiler will use fraction constructor here!

end ||+";

function "*"(R1 : Rational; R2 : Rational) return Rational is
N: Integer;
D: Positive,
begin
N := Numer(R1) * Numer(R2);
D := Denom(R1) * Denom(R2);
return N/D; -- compiler will use fraction constructor here!

nkn.
end "*";

317

function "-"(R1 : Rational, R2 : Rational) return Rational is
begin -- stub
return 1/1;

end "_H;

function "/"(R1 : Rational; R2 : Rational) return Rational is
begin -- stub
return 1/1;

end "/";

-- constructors: return the rational sum, difference, product,
-- and quotient of rational numbers R1 and B

-- Pre : R1 and R2 are assigned values

-- Post: return the rational sum, difference, product, and

-- quotient of R1 and R2.

function "<" (R1 : Rational; R2 : Rational) return Boolean is
begin
return Numer(R1) * Denom(R2) < Numer(R2) * Denom(R1);

>

Cnd "<H;

function ">" (R1 : Rational; R2 : Rational) return Boolean is
begin -- stub
return True;

end !|>ﬂ;

318

function "<=" (R1 : Rational; R2 : Rational) return Boolean is
begin -- stub
return True,

end u<:n;

function ">=" (R1 : Rational, R2 : Rational) return Boolean is
begin -- stub
return True,

end ">=".,

-- inquiry operators: comparison of two rational numbers
-- Pre : R1 and R2 are assigned values

-- Post: return R1 <R2, R1 >R2, R1 <= R2, and R1 >=R2, respectively

end Rationals;

319

Case Study : Con'd

with Text 10;

with Rationals;

procedure TestRationall is

-- Tests the package Rationals
A: Rationals Rational;
B: Rationals.Rational,
C: Rationals.Rational;
D: Rationals.Rational;
E: Rationals Rational,
F: Rationals.Rational,

begin -- TestRationall

A = Rationals."/"(1,3),

B := Rationals."/"(2, -4);

Text IO Put(ftem =>"A=");

Rationals.Put(Item => A),

Text_10.New_Line;, Text_IO.Put(Item=>"B ="),

Rationals. Put(Item => B);
Text 10.New_Line;

-- Read in rational numbers C and D.
Text_I1O Put(Item => "Enter rational number C as 2 integers > ");

Rationals.Get(Item => C);

320

Text_IO.Put(Item => "Enter rational number D as 2 integers > "),
Rationals. Get(Item => D),

Text 10.New_Line;

E := Rationals."+"(A,B); -- form the sum
Text 10 Put(Item=>"E=A+Bis"),

Rationals. Put(Item => E),

Text 10.New_Line;

F := Rationals."*"(C,D), -- form the product
Text 10 Put(Item=>"F=C *Dis "),

Rationals. Put(Item => F),

Text 10.New_Line;

Text 10 Put(Item=>"A+E*Fis"),

Rationals Put(Item => Rationals."+"(A, Rationals."*"(E,F))),
Text 10.New Line;

end TestRationall;

321

Variant Records - General Form

> All field names must be unique.

> An empty field list is indicated by a null instead of a field list.

> All values of the discriminant must be covered by when clauses. A discriminant
is used to state which variant of record is being dealt with

type Face (Bald : Boolean) is
record
Eyes : Color; -- start of fixed fields
Height : Inches;
case Bald is -- start of field lists
when True =>
WearWig : Boolean,
when False =>
HairColor : Color;
end case;

end record;

322

> A derived type only can have discriminants.

> Examples

1. The parent type does not have discriminants and the new type has.

type Person is tagged
record
Name : String (1.. 30);
NameLength : Natural := 0,

end record;

type Employee (StartingSalary : Natural) is new Person with
record
Salary : Natural := StartingSalary;
end record;
When an employee is declared a StartingSalary must be stated
E : Employee(1800);
2. The parent type has discriminants but the derived non
type Temp_Employee is new Employee with
record
Start, Fimish : Time,
end record;
The derived type inherits the discriminant of its parent. So when
we declare a temporary employee we have to give a value for the
discriminant StartingSalary.

TE : Temp_Employee (1600);,

323

3. Both the parent and the derived type have discriminants.
type Permanent Employee (First_Salary : Positive;
No : Positive) is new Employee (First_Salary) with
record
date_of Employment : Time;
end record,
The permanent_Employee has no discriminant called StartingSalary and so
it does not inherit the component Salary. It gets the discriminants that are

given in the new declaration First_Salary.

The discriminant StartingSalary for the Employee always has the same

value as the discriminant First_Salary in the derived type
Permanent Employee. When we declare a variable of type
Permanent Employee we must give values to the two discriminants

PE : Permanent Employee (1600, 1234),

|
|
\
|
|
|
|
\
|
|
|
\
1
First_Sarary and No
|
|
\ > The discriminant of a variant part is allowed to be a generic formal type
|
\

324

5 A value for a discriminant field must be supplied unless a default (=) is
provided in the definition.

type Face (Bald : Boolean := True) is

record

Eyes : Color; -- start of fixed fields
Height : Inches;
case Bald is -- start of field lists
when True =>
WearWig : Boolean,
when False =>
HairColor : Color;
end case;

end record;

325

Constrained / Unconstrained Variant Records

» An unconstrained record variable is one that has a default discriminant value,
and none is supplied in the variable declaration.

JohnsFace : Face;

> A constrained record variable is one whose discriminant value is supplied when
the variable is declared

JohnsFace : Face(Bald => Flse;

> It is not permitted to change the discriminant value of a constrained record at
execution time.

JohnsFace: Face (Bald => False) -- declaration
-- later in the program

JohnsFace := (Bald => True) -- Cannot do this

326

Storing Values into Variant Records

> Any field may be selected and read at any time.

> Any field may be selected and changed except a discriminant field if the change
is not consistent with the discriminant value.

> The discriminant field of a constrained record cannot be changed under any
circumstances.

> The discriminant field of an unconstrained record can be changed only if the
entire record is changed at the same time (aggregate or copy).

In otherwords - It is best to supply a default value
for the discriminant because unconstrained
variant records are more flexible!

327

Operation on Variant Records

> A variable record value may always be assigned to an unconstrained variable of
the same record type (it is permissible to change the discriminant of an
unconstrained variable).

> A variant record value can be assigned to a constrained variable of the same
type only if the discriminant values match (the discriminant value of a
constarined variable can never be changed).

> Two variant record values can be compared for equality only if the discriminant
values agrre.

type KidKind is (Girl, Boy);

type Child (Sex : KidKind :=Girl) is
record
First ;: Character, -- start of fixed fields
Last : Character;
Age : Natural;
case Sex is
when Girl =>
Sugar : Float;
Spice : Float;
when Boy =>
Snakes : Integer,
Snails : Integer;
Tails : Integer
end case,

end record;

328

Unconstrained Array Types

What is an unconstrained array?

> An unconstrained array is one declared in such a way that the bounds of the
array are not specified in the type declaration.
type ListType is array (Integer range <>) of Float;

In this case (Integer range <>) means the subscript range (bounds) must be a
subrange of the integers.

> The bounds are supplied only when variables of that type are created.

L1 : ListType (1..50);
L2 : ListType (-10.. 10),
L3 : ListType (0..20);

329

Operations on Unconstrained Array Types

> The operations of assignment and equality testing are defined : however,

(1) both operands must be a variable of the same unconstrained array type.

(2) both must have the same number of elements.

type ListType is array (Integer range <>) of Float,

L1 : ListType (1 .. 50);,

L2 :ListType (-10..10);

L3 :ListType (0 ..20);,

L2 =13; -- OK same size for all onconstrained array types
L1(20..40):=L2; --OK same size and type

L2(1..5)=L1(6..10);, --same size and type

L1:=L2; -- will raise constraint error (different sizes)

330

Attribute Functions

type ListType is array (Integer range <>) of Float,
L1 :ListType(1..50),

L2 : ListType (-10..10);

L3 : ListType (0 .. 20),

L2'First returns the lower bound of L2 or -10 in this case
L2'Last returns the upper bound of L2 or 10
L2'Length returns the number of elements in L2 or 21
L2'Range returns the range -10 .. 10
These attribute functions are frequently quite useful :
for i in L2'Range loop
My _Flt_10.Put (Item => L2(i), Fore => 1, Aft => 2, Exp => 0),

Text 10 New_Line,

end loop;

331

Examples of Unconstrained Array Usage
with Text 10;
procedure TestMaxValue is

type ListType is array(Integer range <>) of Float;

L1 : ListType(1..5); --5 elements

L2 : ListType(-4..3);, -- 8 elements

package My Flt 10 is new Float IO (Num => Float);

-- local procedure to display the contents of a list

procedure DisplayList(L: ListType) is

-- display the contents of a list, represented as an unconstrained array
-- Pre: L is defined

-- Post: display all values in the list
begin -- DisplayList

| for Count in L'Range loop
My _Flt_IO Put(Item=>L(Count), Fore=>3,
Aft=>1, Exp=>0),
end loop;
| Text 10.New_Line,
end DisplayList;

332

function MaxValue(L: ListType) return Float is

-- return the largest value in an object of type ListType

-- Pre: L is defined

-- Post: returns the largest value stored in L
CurrentMax : Float;

begin -- MaxValue

CurrentMax := Float'First; -- minimum value of Float
for WhichElement in L'Range loop
if L(WhichElement) > CurrentMax then
CurrentMax := L(WhichElement);
end if,
end loop,
-- assert: CurrentMax contains the largest value in L
return CurrentMax;

end MaxValue;

begin -- TestMaxValue
L1:=(00,-57,23,509,1.6),
L2:=(3.1,-24,00,-5.7,8.0,23,5.9, 1.6),

Text_I10.Put(ltem=> "Testing MaxValue for float lists");
Text 10.New_Line;

Text 10 .New_Line,

Text 10 Put(Item=> "Here is the list L1");

Text 10 New Line;, DisplayList(L =>L1);

333

Text _10.Put(Item=> "The maximum value in this list is ");
My Flt 10 Put(Item => MaxValue(L=>L1), Fore=>1,Aft=>2 Exp=>0),
Text 10.New Line;
Text 10.New_Line;
Text_10.Put(Item=> "Here is the list L2");
Text 10.New_Line; DisplayList(L => L2);
Text 10 Put(Item=> "The maximum value in this list is "),
My Flt 10 Put(Item => MaxValue(L=>L2), Fore=>1, Afti=>2, Exp=>0);
Text 10.New_Line;
end TestMaxValue;

334

Examples of Unconstrained Array Usage

package Vectors is

-- specification for vector arithmetic package

type Vector is array (Integer range <>) of Integer,

-- exported exception, raised if two vectors are not conformable
-- (i.e., have different bounds)

Bounds_Error : exception,

function "+" (K : Integer; Right : Vector) return Vector;
-- adding a scalar to a vector

-- Pre: K and Right are defined

-- Post: returns the sum of the vector and the scalar

-- Result(i) := K + Right(i)

function "*" (K : Integer; Right : Vector) return Vector;
-- multiplying a vector by a scalar

-- Pre: K and Right are defined

-- Post: returns the product of the vector and the scalar

-- Result(i) := K * Right(1)

function "*" (Left, Right : Vector) return Integer;
-- finds the "inner" or "dot" product of two vectors
-- Pre: Left and Right are defined and have the same bounds
-- Post: returns the inner product of Left and Right

335

function "+" (Left, Right : Vector) return Vector,

-- finds the sum of two vectors

-- Pre: Left and Right are defined and have the same bounds
-- Post: returns the sum of Left and Right

-- result(i) := Left(i) + Right(i)

end Vectors;

336

Examples of Unconstrained Array Usage

package Matrices is
-- specification for package Matrices
type Matrix is array(Integer range <>, Integer range <>) of Float;

-- exported exception, raised if two matrices are not conformable

Bounds_Error : exception;

function "+" (K : in Float; M : in Matrix) return Matrix;
-- adds a scalar to a matrix

-- Pre: K and M are defined

-- Post: returns the sum of the scalar and the matrix

-- Result(i,j) = K + M(1,j)

function "*" (K : in Float; M : in Matrix) return Matrix;
-- multiplies a matrix by a scalar

-- Pre: K and M are defined

-- Post: returns the product of the scalar and the matrix

- Result(ij) = K * M(i,j)

function "+" (Left, Right : in Matrix) return Matrix;

-- finds the sum of two matrices

-- Pre: Left and Right are defined and have the same bounds
-- Post: returns the sum of Left and Right

-- Result(i,j) == Left(i,j) + Right(i,j)

-- Raises Bounds_Error if the matrices are not conformable

337

function "*" (Left, Right : in Matrix) return Matrix;

-- finds the product of two matrices

-- Pre: Left and Right are defined

-- and Left's column bounds agree with Right's row bounds
-- Post: returns the product of Left and Right

-- Raises Bounds_Error if the matrices are not conformable

function Transpose(M : in Matrix) return Matrix;
-- finds the transpose of a matrix

-- Pre: M is defined

-- Post: returns a matrix such that Result(i,j) = M(j,1)

-- Result has M's bounds, interchanged

end Matrices;

338

Generic Units

> A generic component (package or subprogram) is one that is parameterized at
the level of the types that it works with. There are generic formal and actual
parameters, just like the ones we use with subprograms. In other wotds, a
generic component can be instantiated (tailored) to work with variety of

different types.

> Let's look at the familiar procedure below designed to exchange the values of
two variables of type Natural :

procedure Exchange (Valuel, Value2 : in out Natural) is
TempValue : Natural;
begin
TempValue := Valuel,
Valul := Value2,;
Value2 ;= TempValue;

end Exchange;

5 The same sequence of statements are used to accomplish an exchange of values
of two variables of type float:

procedure Exchange (Valuel, Value2 : in out Float) is
TempValue : Natural,
begin
TempValue := Valuel,
Valul = Value2,
Value2 := TempValue;

end Exchange;

339

Generic Units

> To exchange any the values of a given type the sequence of statements are
always going to be the same; that is they constitute a recipe or template for
exchanging the values of any given type.

> Ada's generic facility allow us to take advantage of the generalized nature of
routines and allow us to create a single routine to handle many different types.

generic
type ValueType is private; -- formal type

procedure GenericSwap (Valuel, Value2: in out ValueType),

procedure GenericSwap (Valuel, Value2 : in out ValueType) is
TempValue : Natural;
begin
TempValue := Valuel,
Valul = Value2;
Value2 := TempValue,

end Exchange;

> Now the generic is ready to be instantiated (tailored) by plugging in the type):
generic
type ValueType is private;
procedure GenericSwap (Valuel, Value2 : in out ValueType);
procedure IntegerSwap is new GenericSwap (ValueType => Integer);

procedure CharSwap is new GenericSwap (ValueType => Character),

340

Generic Units
> The formal type in the generic unit can be one of the following :
1. type Item is private;
2. type Buffer (Length : Natural) is limited private,
3. type Enum is (<),
4. type Int is range <>,
5. type Angle is delta <>,
6. type Mass is digits <>;
7. type Table is array (Enum) of Item,
8. type Point is access Node;
9. type Employee is tagged private;
10. type Employee is tagged limited private;
11. type Permanent_Employee is new Employee with private;
12. type Tree is abstract null record,
> Generic subprogram parameter (or formal subprogram) :
1. with subprogram_declaration;
with Compare (Valuel, Value2 : ValueType) return Boolean,
2. with subprogram_declaration is subprogram_name;
with procedure Upadate is Default_Update;
3. with subprogram_declaration is <> ;
with function "<" (E1, E2 :Element) return Boolean is <> ;
4. with package parametter_name is new Gen_Pack (<>),
Gen_Pack is another generic package.
generic
with package Parameter is new P1 (<>);

package P2 is

end P2;

341

Generic Subprogram Parameters

> Sometimes a generic needs to be instantiated with the names of functions or
procedures or other generic packages. For instance, lte's look at our old friend
Maximum which returned the larger of its two integer operands.

function Maximum (Valuel, Value2 : Integer) return Integer is
Result : Integer;
begin
if Valuel > Value2 then
Result .= Valuel,
else
Result := Value2;
end if;
return Result;

end Maximum,

> ldeally we would like to make a function that returns the larger of its two
operands regardless of the types of the operands.

> The additional problem we encounter here that we did not encounter with our
GenericSwap is the addition of the comparison operation :

if Valuel > Value2 then

> Suppose the type which we are comparing does not have obvious predefined
greater-than operator. For instance suppose we are comparing personnel
records in an array of records ; how do you compare them? By name? By Zip
Code ? etc.

342

Generic Subprogram Parameters
function GenericMaximum (Valuel, Value2 : ValueType) return ValueType is
Result : Integer;
begin
if Compare(Valuel, Value2) then
Result ;= Valuel;
else
Result ;= Value2;
end if;
return Result;

end GenericMaximum,;

generic
type ValueType is private;‘
with Compare(Valul, Value2 : ValueType) return Boolean;,

function GenericMaximum (Valuel, Value2 : ValueType) return ValueType is

> We can instantiate (or tailor) or generic for differing types :

function Maximum is new

GenericMaximum(ValueType => Integer, Compare => ">"),
function Maximum is new

GenericMaximum(ValueType => Float, Compare => ">");
function Minimum is new

GenericMaximum(ValueType => Integer, Compare => "<"),
function Maximum is new

GenericMaximum(ValueType => Float, Compare => "<"),

343

Generic Subprogram Parameters

> But note that the operators "<" and ">" are predefined for the types that we
have instantiated (that is the Integer and Float types come pre-equipped with
the less-than and greater-than operators).

> What happens if we need to compare two variables for which these operations
are not predefined? We must define them!

> Let's take a quick look at a generic sorting routine.

344

Generic Sorting Procedure

-- procedure specification for GenericSwapSort

generic -- procedure specification for GenericSwapSort

-- here are all the generic formal parameters

type ElementType is private; -- any nonlimited type will do

type IndexType is (<), -- any discrete type for index

type ListType is array (IndexType RANGE <>) of ElementType;
with function Compare (Left, Right : ElementType) return Boolean;

procedure GenericSwapSort(List: in out ListType);
-- procedure body for GenericSwapSort
with GenericSwap,; -- context clause
procedure GenericSwapSort(List: in out ListType) is
-- we need to make an instance of GenericSwap for this case

procedure Exchange is new GenericSwap (ValueType =>

ElementType),

345

begin -- GenericSwapSort

for PositionToFill in List'First. List'Last loop

-- Store in List(PositionToFill) the "largest" element remaining
-- in the subarray List(PositionToFill. .List'Last)
for ItemToCompare in PositionToFill. List'Last loop
if Compare(List(ItemToCompare),
List(PositionToFill)) then
Exchange(List(PositionToFill),
List(ItemToCompare)),
end if;
end loop;
-- assert: element at List(PositionToFill) is "largest” in subarray
end loop;

end GenericSwapSort;

346

Generic Sorting Procedure

> If we had a program that contained the following declarations, we might desire
to sort an array of student score records :

MaxSize : constant Positive ;= 250,

MaxScore : constant Positive := 100,

subtype StudentName is String(1..20),

subtype ClassIndex is Positive range 1..MaxSize;
subtype ClassRange is Natural range 1. MaxSize;

subtype ScoreRange is Natural range 1. MaxSize;

type ScoreRecord is
record
Name : StudentName,
Score : ScoreRange,

end record;

function ScoreLess (Scorel, Score2 : ScoreRecord) return Boolean is
begin
return Scorel.Score < Score2.Score;

end Scoreless;

procedure SortScores is new GenericSwapSort
(ElementType => ScoreRecord,
IndexType => ClassIndex,
ListType => ScoreArray

347

Compare => ScoreLess),

Scores : ScoreArray (ClassIndexFirst .. ClassIndexLast),
ClassSize : ClassRange;

> Now we can make the call to do the sorting :

SortUpScores (List => Scores(1 .. ClassSize),

348

Recursion

> The general concept of a subprogram (a procedure or function) calling itself'is
known as recursion.

> Although recursion often provides us with a rather elegant solution to a
problem, it comes with a price (time and space) resulting from the overhead
associated with additional procedure calls.

> Recall, that when a procedure or function is called a new activation record for
that subprogram is pushed onto the program stack. The current value of all the
local variables as well as the address of the next line of the code to be executed
is recorded prior to actually placing the record on the stack.

> Despite the additional overhead incurred, recursion often provides a simple,
natural and elegant solution to many types of problems. These solutions are
generally much easier to read and understand than iterative solutions to the
same problem, a benefit which can justify the additional overhead costs.

349

Recursive Algorithms
> Recursive algorithms are generally of the form :
if (the stopping case is raised) then
solve the problem
else

reduce the problem using recursion

end if;

> The following simple example for performing multiplication illustrates the
general nature of recursive programming.

> The function Multiply, which returns the product of M x N, splits the original
problem into two simpler problems :

1. Multiply Mby N - 1

2. Add M to the result

3. The stopping case is when N is finally reduced to 1.

350

Recursive Multiplication Function

function Multiply (M : in Integer, N : in Positive) return Integer is

-- Performs multiplication recursively using the + operator
-- Pre : M and N are defined and N> 0
-- Post : returns M * N

Result : Integer;

begin -- Multiply
if N=1 then
Result :=M; -- stopping case
else
Result ;== M + Multiply (M, N-1); --recursion
end if;

return Result;

end Multiply;

351

Test Program
with Text 10;
procedure TestMultiply is

FirstInt : Integer;
SecondInt : Positive;
Answer : Integer;

package My Int IO is new Integer IO (Num => Integer),

function Multiply (M : in Integer; N : in Positive) return Integer is
-- Performs multiplication recursively using the + operator
-- Pre : M and N are defined and N >0
-- Post: returns M * N
Result: Integer;
begin -- Multiply
Text_IO.Put(Item => "Multiply called with parameters");
My Int_IO Put(Item => M),
My_Int_IO.Put(Item => N),
Text 10 New Line;
if N=1 then
Result .= M; -- stopping case
else
Result := M + Multiply(M, N-1); -- recursion
end if;

352

Text 10 .Put(Item => "Returning from Multiply with result");
My Int 10 .Put(Item => Result); Text I0.New_Line;
return Result;

end Multiply;

begin -- TestMultiply

Text 10 Put(Item => "Please enter a integer > "),

My Int_IO.Get(Item => FirstInt),

Text 10 Put(Item => "Please enter a positive integer > "),
My Int _10.Get(Item => SecondInt);

Answer := Multiply(M => FirstInt, N => SecondInt),
Text_10.Put(Item => "The product of the two integers 1s "),
My Int 10 .Put(Item => Answer, Width => 1),

Text 10.New_Line;

end TestMultiply,

353

Tracing a Recursive Function

> Lite's trace the execution of our Multiply test program by examining the values
recorded on the activation records for each recursive call of the function. Real
activation records do not look exactly like our drawings but these drawings
serve to illustrate how we can trace recursive subprograms.

functien Multiply (M : in Integer, N : in Positive) return Integer is
Result : Integer;
begin -- Multiply
if N=1 then
Result :=M; -- stopping case
else
Resuft =M + Multiply (M, N-1);, --recursion
end if;
return Result;

end Multiply;

Client program call -> Answer := Multiply (6, 3)

Multiply (6,3)
M=6
N =1
3 =1Is False
Result:= 6 + Multiply] (6,2)

Return Result

354

Tracing a Recursive Function

> Recall that with each function call an activation record is filled in then "pushed”
onto the program stack and that with each return an activation record is
"popped" from the stack.

AAnswer := Multiply (6,3)

18 Multiply(6,3)

3 =1is False
Result := 6 + Multiply(6,2)

return Result

12
Multiply(6,2)
M=6
N =2
2 =1 is False

Result := 6 + Multiply(6,1)

return Result
A

Multiply(6,1)

return

355

Another Recursion Example

> The two Foactorial functions below illustrate both an iteratively designed
solution to the problem of finding factorials and one designed to solve the
problem recursively.

Iterative Solution
function Factorial (N : in Natural) return Positive is
Fact : Natural .= 1;
begin
if N=0 then
return 1,
else
fori in 1. N loop
Fact .= Fact * i;
end loop;
return Fact;
end if;
end Factorial;
Recursive Solution
function Factorial (N : in Natural) return Positive is
begin
if N=0 then
return 1; --stopping case
else
return N * Factorial (N - 1);-- split using recursion
end if;

end Factonal,

356

Trace of Factorial(3)

function Factorial (N : in Natural) return Positive is

begin
if N=0 then
return 1; --stopping case
else
return N * Factorial (N - 1);-- split using recursion
end if;

end Factorial;

Client program call --> Answer := Factorial (3);

Factorial (3)

N=3
Result := 3 * Factorial(2)

return Result

357

Trace of Factorial(3)

Answer := Factorial(3)}—
Factorial(3) * '

N=3

— return Result

Result := 3 * Factorial(2)

/'y

Factorial(2)

N=2

Result := 2 * Factorial(1)

return Result

A

Factorial(1)

A 4

N=1

Result := 1 * Factorial(0)

return Result

4

Factorial(0) v

N=0
Result := 1

return Result

358

A Final Note on Recursion

> Most errors in recursive programs are infinite loops which are caused by
missing or incorrect stopping conditions. Always make certain you check to see
that the stopping condition is valid.

> For large problems with many recursive calls, it is not uncommon to run out of
stack space. You may have to increase the size of your program stack (
compiler / environment options) prior to running your program.

> You may also find it worthwhile to look at QuickSort (O (N log(N)))
algorithm which is much faster than our old friend the SelectionSort (O (N?))

359

Dynamic Data Structures

> A dynamic data structure is a collection of elements (nodes) that are generally
implemented ae records or subprograms. Space for these records is allocated at
run time (from a pool of free memory called the heap). The individual nodes are
then connected (linked) through the use of memory address pointers.

> These address pointers are referred to in Ada as access variables. Variables of
this type simply hold the memory address of a for referencing variables created
dynamically off heap.

> Dynamic data structures can grow or shrink during program execution.

> Consider a record type as follows :
type RecType is
record
-- fields

end record,;

> The type definition below gives us the ability to declare variables of type
RecPointer, that is, variables that can hold pointers to things of type RecType.

type RecPointer is access RecType ;

P1, P2, P3 : RecPointer; -- create three variables
P1 P2 P3
NULL NULL NULL

P1, P2, P3 initialized to NULL

360

5 There are two kinds of access type
1. access to object types (the example in the previous page) and

2. access to subprograms.

> Access to subprograms

Example.

type Trig_Function is access function(R : Real) return Real;

T : Trig_Function, --create a variable

NULL

> T point to a function Sin as loow:
function Sin(R : Real) return Real;
T : Sin'Access;

Sin

\ function (Sin)

361

Dynamic Data Structures

> When an access variable is created in Ada its value is always initialized to a
special unique internal value known as NULL. This indicates that the pointer
does not point to anything.

> The new operator 1s used to dynamically create new variables. The following
statement dynamically allocates space from the heap to create a new RecType
variable and stores the address (reference) to that variable in P1. P1 is now said
to point to the new variable.
P1: new RecType,

P1

> Access variables can be copied using the assignment operator. The statement :
P3 =P1;

causes P3 to point to the same address as P1.

> Each time we make the call P1 := NewType, a new address is pcaced in P1.
This means that if we are not careful we can easily lose track of dynamically
allocated variables. These variables are then unaccessible, both for our use and
for use by the heap manager.

> More about access types in the Object Oriented Programming with Ada.

362

Dynamic Data Structures

Creating a Linked Structure

> Before we go any ferther, the following story may help you to visualize the
concept of dynamically linked structures. As you read the story, try to imagine
how you would model the story in Ada.

> The following story is completly fictional, any resemblence to actual characters
is purely coincidental.

363

The Story of Julio's Parking Lot

Players :
Maria -- very bright, ambitious and extremely attractive
Frank -- Mara's husband, hard working, naive and somewhat of a dullard.

Julio -- Frank's best friend, very wealthy, suave and something of a playboy.

Background :

Maria, who has worked evenings at the local pub as a cocktail waitress for the past
five years, has grown tired of the drudgery of her job and decides that there must be a
better way to make a dollar. Being the intelligent and ambitious woman she is, she
attempts to convince her husband Frank, that they should take their life savings and invest
it in a business of their own.

Frank, who has been working as a sardine packer is not enthusiastic about giving
up his job at the sardine packing factory. He argues that his present job, despite the fact
that it doesn't pay very well, is both interesting and offers long term job security.

Maria persists and suggests to Frank that they purchase old wrecks and start their
own low priced car rental service called "Rent a Junk". Furthermore, she points out to
Frank that they can make a real killing since the initial investment would be very low,
insurance costs would be minimal and maintenance costs negligible since they could just
sell the junk cars back to the salvage yard rather than repair them.

Frank, despite the fact he has never been nominated for the Nobel Prize, accurately
criticizes Maria's plan by pointing out that this would require them to have a parking lot to
park all the wrecks. He argues that initial start up costs would also include the purchase of
a plot of land and a small building from which they could conduct their business. This
initial cost, he argues, is prohibitive and suggests that it would be smarter for them both to

keep their current jobs.

364

Maria of course has already found a solution to the problem. Maria tells Frank that
she has worked out an arrangement with Frank's best friend Julio the owner of the huge
parking lot at the municipal airport. For a minor fee of $1.00 per day per car, they can
park their cars in available parking spaces, to be specified by Julio. Furthermore, she says,
Julio has agreed to let them use an old runway line shack to run their business from, for a
very small fee (and an occasional amorous favor). The line shack is located only a few
feet away from Julio's swank new office, which will make it easy for Maria to contact Julio
to obtain the location of available parking spaces and to negotiate payment.

Julio, who enjoys Maria's company (and favors), insists that parking spaces must
be negotiated for one at a time, since must check his computer to verify that any vacant
spots have not been contacted out by his staff. (Devilish grin)

Frank reluctantly agrees to give up his job and to start the new business, only after
Maria exhausts all efforts at reasoning and resorts to more effective and amorous
negotiations on her dull wilted husband. Several months later, Frank is balancing himself
precariously on the roof of the extremely small converted runway line shack attempting to
secure the new "Rent a Junk" sign while Maria is making final arrangements for delivery of

their first shipment of junkers.

365

Rent - Junk -(Two Weeks Before Opening)

Julio's
Municipal Airpot
Rent-a-Junk Parking Enterprises
A
1 2 3 4 5 6 7
B
C
1 2 3 4 5 6 7
D
E
1 2 3 4 5 6 7
F

366

Single Linked Lists

Several days later the first shipment of junk cars arrive and Maria tells Frank she is
going next door to get a parking space. Maria enters the swank office and calls out in an
enticing but subdued voice: "Oh Julio"

Maria returns after a few brief, but passionate, moments with number of an
unassigned parking slot to place the first junker. She calls out Frank with number of the
parking space. Unfortunately, poor Frank being the dullard that he is, can only remember
three things at any given time and since his poor memory is already overtaxed just
ensuring that he can remember his own as well as his beautiful wife's name, he asks Maria
to write to write the location down on a piece of paper.

Maria knowing that is almost certain that Frank will lose the piece of paper, writes

the location on the back of his right hand and sends Frank out to park the first car.

367

Rent - Junk -(Two Weeks Before Opening)

Julio's
Municipal Airpot
Rent-a-Junk Parking Enterprises
A
1 2 4 5 6 7
B (T
-y
C
1 2 4 5 6 7
D
E
1 2 4 S 6 7
F

368

Rent - a - Junk

Frank gleefully returns and announces to Maria that he has done as she has
directed in reply to which. Maria tells Frank to unload the second car from the trailer
while she goes next door to obtain another parking space. "Oh Julio" she cries!... then
returns.

Again she tells Frank to go and park the new junker, realizing Frank's propensity
for forgetfulness, she instructs him to return to the car parked in the space written on his
right hand. Then directs him to write the number of the new parking space on the hood of
the car parked in the location. She explains to Frank that in the future be will only have to
recall where the first car is parked in order to find all the others that he has parked,
because all he has to do is go to the first car, read the location of the second car off the
hood of the first, go to that location and read the location of the third car off the hood,
and continue in this fashion until he reaches the last car which will not have a number on
the hood.

Frank, dizzied by his wife's brilliance and beauty, steps out once again to do she
has directed. The same routine continues until the last of the cars have been removed from

the trailer and parked in their spaces.

369

Rent - a - Junk (First Shipment Parked)

Julio's
Municipal Airpot
Rent-a-Junk Parking Enterprises
A @
1 2 4 5 6 7
B ()
-
C AI 1
-/
1 2 4 5 6 7
D @
E @
1 2 4 5 6 7
a 2
F

370

Rent - a- Junk

Maria then hands poor old Frank a bucket of soapy water, a sponge, a mobile fresh
water tank, a DustBuster and directs Frank to go wash and vacuum the cars before they
officially open for business the next morning. Maria sweetly encourages her poor husband
to finish quickly by promising an interesting evening of amorous favors in appreciation for

all of his hard work. Frank, happily proceeds on his way to the first car.

Frank's Dilemma #1

After Frank has washed all the cars, he realizes that he has must have lost his
wallet inside one of the cars while he was cleaning the interior. How will he find his
wallet?

Answer

Start at the first car and follow the numbers written on the hoods of the car until
he finds the wallet he is searching for or he arrives at the end of the list of cars (recall that
he will know when he has reached the last car because there will be nothing written on the

hood of the car).

Frank's Dilemma #2
The next day a customer comes in to "Rent a Wreak" to rent any old junker that
they can provide. What directions will Maria give to Frank in order to allow him to receive
a car for their first customer?
Answer
Return with the car located in the parking space written on the back of his right
hand. Before giving the car to the customer, erase the number written on the back of his

hand and replace it with the number that is written on the hood of the car.

371

Doubly Linked Lists

Unimpressed by the story Frank relates to her about searching for his wallet. Maria
devises a new schema for parking the cars that should make it easier for dear old Frank to
find his wallet in the future. Since all the cars have been rented out, she decides that the
best time to implement her schema is upon the return of the first vehicle.

She now gives Frank the parking space number and tells Frank to park the car and,

once again, write down the number she has just given him on the back of his right hand.

372

Rent - a - Junk (First Rental Returns)

Julio's
Municipal Airpot
Rent-a-Junk Parking Enterprises
A
1 2 3 4 5 6 7
B T
__
C
1 2 3 4 5 6 7
D
E
1 2 3 4 5 6 7
F

373

Rent - a - Junk

When the second car returns Maria instructs Frank to return to the car parked in
the space written on his right hand, then directs him to write the number of the new
parking space on the hood of the car parked in that location. However, this time she also
tells him to write the number of the parking space of the first car on the trunk of the car he

is currently parking before proceeding to the new parking spot.

374

Rent - a - Junk (All Rental Returned)

Julio's
Municipal Airpot
Rent-a-Junk Parking Enterprises
A |
\C[2) \E[4)
1 2 3 4 5 6 7 8 9
B (1)
-
C Al 1
K 7
1 2 3 4 5 6 7 8 9
D (H 3
ALY
E 1
8/
1 2 3 4 5 6 7 8 9
a 2
F
\H 4

375

Rent - a - Junk

Again she explains to Frank that in the future be will only have to recall where the
first car is parked in order to find all the others since all he has to do is go to the first car,
read the location of the second car off the hood of the first, travel to that location and read
the location of the third car off the car in that spot and so forth just as he did before. In
addition, should be again lose his wallet he will not have to return to the first car in the list
and search all the subsequent cars. She further explains that be merely has to glance at the
number written on the trunk of the last car and start going backwards in the list of cars
until he finds his wallet or reaches the first car in the list which he will recognize as it will

not have a number written on the trunk.

Epilog

"Rent a Junk" was a successful that our dashing young Julio was overcome with
exhaustion from all of Maria's favors and passed away, but with such a smile of
entertainment on his face that all who attended his funeral noticed with amazement. Before
he died however, Julio was so pleased with their business arrangement that he willed his
entire parking lot enterprise to his good friend Frank.

Frank finally discovered the true nature of Maria's business arrangement with Julio
after which they discovered, sold their business to another equally enterprising and
energetic young couple, Mario and Francine.

Today, Maria is the proud owner of the local pub in which she previously worked
and Frank now runs his old friend Julio's airport parking lot business!

"OH, FRANK" . . .

(Frank turns in Francine's direction and grins from ear to ear!!)

376

APPENDIX B
OBJECT ORIENTED PROGRAMMING DEFINITION
Object Oriented programming is a way of thinking about process of decomposition
problems and developing programming solutions.

Object Oriented Programming builds upon the following :

> Object Oriented design which contains :
» Objects, Entities that have structure and state.
» Operations which are actions on objects that may access or manipulate
the state.
» Encapsulation that is some means of defining objects and their
operations and providing an abstract interface to them, while hiding

their implementation details.

> Inheritance. It is a mean for incrementally building new abstractions from ex-
isting one by "inheriting" their properties without disturbing the implementation of the

original abstraction or the existing clients.

5 Polymorphism(From the Greek poly, many, and morphe, form). It is a mean
of factoring out the differences among a collection of abstractions such that programs may
be written in terms of their common properties. It has the ability to identify a type at run

time and to manipulate values of several specific types.

377

ADA 94 GENERAL APPROACH TO OOP
Ada 83 supports an object oriented design but does not have the support for inheri-
tance and polymorphism found in fully object oriented languages.
Ada 94 contains all the object oriented design features from Ada 83 and in addition
inheritance and polymorphism facilities.
The inheritance is provided by the type extension features that are expressed
through the tagged types and child library units.
There are two means, of using polymorphism in Ada 94 .
> Static polymorphism that is provided through the generic parameter
mechanism whereby a generic unit may at compile time be instantiated with any type from
a class of type.
> Dynamic polymorphism. It is provide through the use of so-called class-
wide types. Also the dynamic polymorphism introduces the ;

» Late binding . It is the ability to choose an operation at run time (
this choice is made late in the compile link run process. The late binding is provided by the
following :

¢ Dispatching. The choice of subprogram to call is made at run
time depending on the type of the 4 parameters or possibly the type of the result of the
subprogram call.

¢ Access to Subprogram. We have access type which can refer-

ence subprograms.

378

PROGRAMMING BY EXTENSION
Programming by extension provides the ability to declare a new type that refines an
existing parent type by inheriting, modifying or adding to both the existing components
and the operations of the parent type.
Programming by extension is provided by the tagged types.
Tagged types are record or private types. So a tagged record or private type maybe
extended with additional components on derivation.
> Record tagged types
type Object is tagged
record
X _Coord : Real,
Y Coord: Real,
end record;
Type Object is a tagged record that can be extended to other types (e.g. Circle
type). We can declare an extended type Circle in two ways with:
» Additional Components
type Circle is new Object with
record
Radius : Real;
end record;
Type Circle is derived from the Object type and has one additional component
(Radius) and also inherits all the operations related with this object.
» No Additional Components
type Circle is new Object with null record;
The declared type Circle in this case is derived from the object type but does not

have any additional components.

379

> Private type
We can extend a private type Object as

type Object is tagged private;

private
type Object is tagged
record
X Coord : Real,
Y Coord: Real;
end record;
We can declare a type Circle the same as the tagged type records;
» With Additional Components
type Circle is new Object with
record
Radius : Real;
end record;
» With no Additional Components
type Circle is new Object with null record;
The tagged types(e.g. Object type) can be declared in package specification or in
the declarations on the package body.
The type extension type (e.g. Circle type) is not allowed at place which is not acces-
sible from the tagged type (or parent type) for example within an inner block.
We can declare two tagged types in the same package but we cannot in that package
declare a subprogram that has operands or result of both type. We allow to do it only out-
side the package.

380

The operations closely related to a tagged type to be inherited must be in the visible
part of the package. The following example shows such a situation.
package Geometry is
type Object is tagged
record
X Coord : Real,
Y Coord: Real,

end record;

function Distance (O : in Object) return Real is
begin
return Sqrt (0.X_Coord ** 2 + 0.Y_Coord ** 2),

end Distance;

type Circle is new Object with
record
Radius : Real;

end record;

end Geometry,
In the above example the function Distance is inherited because is in the visible part
of the package. The type Circle is derived from the type Object with one additional com-

ponent Radius and also inherits the function Distance.

381

The following example shows an illegal extension of a tagged type.
package P is

type T is tagged . . .

procedure OP1(X : T),
end P;

with P;
use P;
procedure K is
package Inner is
type NT is new T with -- Illegal extension because the tagged type(or
parent type T is not visible from the Inner package

record

end record;
procedure OP1(X: NT);
end Inner;

package body Inner is

procedure OP1(X: NT) is

begin
end OP1;
end Inner;
begin
end K;

382

The following example shows a legal extension for a record type
package P is
type T is tagged . . .
procedure OP1(X : T),
end P;

with P;
use P;
package Q is
type NT is new T with -- legal extension of type T. Type is visible from this
-- point .

record
end record,

procedure OP1(X : NT);
end Q;

383

Record Aggregates
Record aggregates are only permitted for a type extension if both the extension part
and the parent part are fully visible. In other words we can only use an aggregate where
we can view all the components.
type Object is tagged
record
X Coord : Real,
Y Coord: Real;

end record;

type Circle is new Object with

record

Radius : Real;

end record;

We can make the following aggregations for the types Object and Circle of course
by taking care the visibility rules that we mentioned earlier.

O : Object := (1.0, 0.5);
C : Circle :=(0.0,0.0,34.7),
O: Object(C);
C: Circle := (O with 41.2); or C: Circle := (Object with Radius => 41 2);

384

CLASS WIDE PROGRAMMING

Each tagged type has an associated type denoted by T'Class.

T'Class is declared implicitly whenever a tagged record type is defined.

T'Class comprises the union of all the types in the tree of derived types rooted at T.

The values of T'Class are the values of T and all its derived types.

The type T'Class is treated as an unconstrained type; this is because we cannot possi-
bly know how much space could be required by any value of a class wide type because the
type might be extended.

type Animal is tagged

record
Species : Species_Name;
Weight : Grams;
end record;
type Mammal is new Animal with
record
Hair_Color : Color_Enum;
end record;
type Reptile is new Animal with
record
Poisson_On_Mouth : Boolean,
end record;

type Primate is new Mammal with

record
Female Born_Property : Boolean;
end record;

The tree structure from the above types is :

385

Animal'Class

Pertile'Class Mamal'Class

Primate'Class

The Animal is a parent type for Reptile and Mammal and Mammal is a parent type
for the Primate.

The Mammal is not a subtype of Animal; Mammal and Animal are distinct types and
values of one type cannot be directly assigned to objects of the other type.

Class wide types have no operations of their own. However, users may define ex-
plicit operations on class-wide types. An example of such an operation is a procedure
Print.

procedure Print(A : in Animal'Class),
Procedure Print may be applied to any object within the class of animals.

We can declare an access type referring to a class wide type. The access type desig-
nates any value of the class wide type from time to time.

type Animal Ptr is access Animal'Class.

The benefit from the use of the class-wide types is a programmer can define several
operations having the same name, even though each operation has a different

implementation.

386

Class-Wide Operations
type Animal is tagged
record
Species : Species_Name;
Weight : Grams;
end record;
type Mammal is new Animal with
record
Hair_Color : Color_Enum;
end record;
A : Animal'Class,
We have the following operations :
if A in Mammal then
. -- special processing for Mammal
end if;
When A is of the class Mammal execute the body of if statement.
If A in Mamal'Class then
. -- special processing for Mammal
end if;
We can also test the tag explicitly using the attribute Tag. So we could write.
if A'Tag = Mammal'Tag then
. -- special processing for Mammal

end if;

387

ABSTRACT TYPES AND SUBPROGRAMS
Abstract type is a tagged type intended for use as a parent type for type extensions,
but which is not allowed to have objects of its own.
type Set is abstract tagged null record;
The purpose of the abstract type is to provide a common foundation upon which
useful types can be built by derivation.
Upon derivation from an abstract type we can provide actual subprograms of the
parent type.
Abstract subprogram is a sort of place holder for an operation to be provided (it
does not have body). Function Union is an example.
function Union (Left, Right : Set) return set is abstract; or
function Union (Left, Right : Set) return set is <>; Symbol <> is same as the
abstraction reserved word in Ada 94.
Example
package Base Reservation System is
type Reservation is tagged null record;
procedure Make(R : in out Reservation) is < ;
end Base Reservation_System;
with Base Reservation System;
package Subsonic_Reservation_System is
type Posttion is (Aisle, Window);
type Meal Type is (Green, White, Red);
type Basic_Reservation is new Base Reservation_System Reservation with
record
Flight Number : Integer;
Date Of Travel: Date;
Seat_ Number : String(1.4)=" ",

>

end record;

388

procedure Make(BR : in out Basic_Reservation),
procedure Select_Seat(BR : in out Basic_Reservation),
type Nice_Reservation is new Basic_Reservation with
record
Seat_Sort : Position,
Food : Meal Type;
end record;
procedure Order_Meal (NR : in Nice_Reservation),
procedure Make(NR : in out Nice_Reservation),
type Posh_Reservation is new Nice_Reservation with
record
Destination : Address;
end record;
procedure Arrange Limo(PR : in Posh_Reservation);
procedure Make (PR : in out Posh_Reservation);

end Subsonic_Reservation_System,

In this example procedure Make is an abstract subprogram so we can enforce it for
all derived types Basic_Reservation, Nice_Reservation and Posh_Reservation.

When we derive from an abstract type we do not have to provide a proper subpro-
gram for every abstract one. However, if we do not, then the newly derived type will also
be abstract.

If we derive from a non-abstract type we can provide abstract operations (either ad-
ditional ones or to replace inherited ones) and as a consequence the derived type will then

be abstract.

389

DISCRIMINANTS
A discriminant is a parameter of a composite type. It can control for example the
bounds of a component of the type if that type is an array type. A discriminant of a task
type can be used to pass data to a task of the type upon derivation.
type Gender is (Male, Female),
type Person (Sex, Gender) is tagged
record
Birth : Date;
end record;
and we can extend Person to type Man
type Man is new Person (Male) with
record
Bearded : Boolean;
end record;
The type Man inherits the discriminant from Person in the sense that a man still has a
component called Sex although of course it is constrained to be Male.
We can have two discriminants in one type. In the following example type Boxer
provides a new set of discriminants.
type Weight is (Light, Middle, Heavy);
type Boxer (W: Weight) is new Person (Male) with
record
-- information according to weight

end record;

390

We can also declare :
package D is
type T is private;

private

type T (N: Natural := 0) is

end D;

This declaration help us to solve the problem of ragged arrays and varying strings by
declaring a private type with out a discriminant and make the full type discriminated, so
that we can choose access type storage for very long strings and direct storage for short
strings.

Also we can declare a private type with unknown discriminants

type T (<) is limited private;
The user can not declare object outside the defining package thereby giving the
package complete control over the creation of objects. The user could of course be given

access values referring to such objects as the result of calling subprograms in the package.

391

OPERATIONS OF TAGGED TYPES
> DISPATCHING
The runtime choice of a procedure is called dispatching. In the following example
procedure Print is a dispatching one.

procedure Process Animal (AC : in out Animal'Class) is

begin
Print(AC) ; -- dispatch according to tag

end Process_Animal;
The procedure Print (AC) is a dispatching call because the value of the tag of AC is

used to determine which procedure Print to call and this is determined at runtime.

| In the following example procedure Print is not a dispatching one because the value

of the tag is determined at the call time.

procedure Process Animal(AC : in out Reptile) is

begin
Print (Animal (Reptile)); -- is not a dispatching call

end Process_Animal;

392

The following example shows when we have dispatching or not. Package Example
declares the tagged type T and the dispatching operations of T the procedures P, Q and

the functions F, G. Also declares an extension type TT .

package Example is
type T is tagged . . .
procedure P (X : T, Y : T),
function F return T,
function G(Z : T) return T;
procedure Q(U: T, V: T :=F),
type TT is new T with . . ;

end Example;
P, Q, F and G are dispatching operations of T because all controlling operands and
results of a call must be of the same type T.

Suppose we have the variables, whose types are as follows:

AB T

AA,BB : TT;

C :T'Class == . . .
D - T'Class :=. . . ;
then

P (A, B); This is non-dispatching , type T because the P is determined by the call .

P(AA, BB), non-dispatching, type TT.

393

P(C, D); Dispatching because we do not know the procedure we use which is de-
termined at runtime . There are the following cases for the procedure P.
1. P(Type T, Type T);
2. P(Type_TT, Type_TT),
3. P(Type Of Class T, Type Of Class T),
4. P(Type Of Class TT, Type Of Class TT),
P(A, BB); Illegal because mixes specific types.
P(A, C); Illegal because mixes static(A of T) and dynamic types (C of T'Class).

P(A, F); Non-dispatching, type T because A is static and determines that the call of
F is also static. The call of F is chosen at compile time to be F with the
result of type T.
P(C, F); Dispatching because C is dynamic and determines the type at runtime. In
this case the call of F dispatches to the particular F with the same type as
C.
P(C, G(D)); Dispatching. The tags of C and D are checked to ensure that they are
: the same; Constrained_Error is raised if they are not;
i P(A, G(F));, Non-dispatching
1 P(C, G(F)); Dispatching. The call of G is then determined by the specific type of C
and this in turn determines the call of F.
Q(A); Non-dispatching. The default call of F is statically determined to be that of
type T.
Q(C); Dispatching. The call of F is dynamically determined by the specific type of
the value C.

C: T'Class := F; non-dispatching. F is statically determined to be T.

394

P(F.F) Illegal because of inheritance we do not know whether we are dealing with
the P and F of the type T or TT. In this case the overload resolution fails. Dis

patching is not involved because there are no clacc-wide operands.

> REDISPATCHING

When after one dispatching operation we apply a further common (and inherited)
operation and so need to dispatch once more to an operation of the original type this is

called redispatching.

procedure Print (MA : in out Mammal) is
begin
Print (Animal(MA)); -- print a mammal
Manipulate(Mammal'Class(MA)); -- redispatch because first we have to
--know the Mammal type and after to
--Manipulate it.

end Print;

395

TYPE CONVERSION
1. Conversion towards the root of a tree.
MA : Mammal'Class;
Make Animal (Animal(MA),
We converted a Mammal into an Animal.
2. Extension in the same type.
type Masic_Animal is new Animal with null record;
A Animal=. . ;
BA:=(A with null record),
3. Conversion of a value of a class-wide type to a specific type.
AC : Animal'Class;
MA:= Mammal(AC);
The AC is of the type Animal'Class. There is a runtime check that the current value
of the class wide parameter AC is of a specific type for which the conversion is possible.
4. View Conversions
The underlying object is not changed but we merely get a different view of it e.g.
Make Animal (Animal(MA);,
The value passed on to the call of Make Animal is in fact the same value as
held in MA but we can no longer see the components relating to the type
Mammal.
5. Full Conversion
PM : Primate'Class;
MA := Mammal(PM);
The tag of MA is of course not changed. The components appropriate to the
type of MA are copied from the object PM. This is not a view conversion but a full

blooded value conversion.

396

ACCESS TYPES

A mechanism for late binding we have already seen in the previous lectures is the
dispatching. Another mechanism is provided by the manipulation of subprogram values
through an extension of access types.

In Ada 94 an access type can refer to a subprogram; such an access to subprogram
value can be created by the Access attribute and a subprogram can be called indirectly by
dereferencing such an access value.

The access to subprogram is used to program general dynamic selection and to pass

subprograms as parameters.

type Trig_Function is access function(R: Real) return Real,

T . Trig_Function,

X, Theta : Real;

T can point to functions such as Sin, Cos and Tan.

We assign an appropniate access to subprogram value to T by writing:
T:= Sin'Access,

We can indirectly call the subprogram currently referred to by T as:

X:= T(Theta), (or X:= T.all(Theta);)

Access type as a parameter to a function

type Integrand is access function (X: Real) return Real,

function Integrate (F : Integrand; A, B : Real) return Real,

Area = Integrate(Log'Access, 1.0, 2.0); -- It computes the area under the curve for
--log(x) from 1.0 to 2.0.

Within the body of function Integrate there will be calls of the actual subprogram

passed as parameter.

397

The subprogram that is accessed can have no parameters.
type Action is access procedure;
Action_Sequence : array (1.N) of Action;
... -- build the array
-- and then obey it
for I in Action_Sequence'Range loop
Action_Sequence (I).all; -- we have to use .all because there are no
-- parameters.
end loop;
> Operation of Access Types
X'Access ; Yields an access value that designates the object denoted by X. The type
of X'Access is an access-to-object type, as determined by the expected type. The expected
type shall be a general access type. X shall denote an aliased view of an object, including
possibly the current instance of a limited type within its definition or a formal parameter of
a tagged type.
P'Access; Yields an access value that designates the subprogram denoted by P. The

type of P'Access is an access-to-subprogram type (S). The subprogram P shall be accessi-
ble from S.
‘ > General Access types

1. We can read and update a varniable.

type Int_Ptr is access all Integer;

IP : Int_Ptr; -- we assign a variable IP of type Int_Ptr.
I. aliased Integer;
IP :=T'Access;

We can read and update the variable I through the access variable IP.

398

2. We want to have only read access to a variable.
We can use constant instead of all when we want to restrict the access to be read-
only.

type Const_Int_Ptr is access constant Integer;

CIP : Const_Int_Ptr;

I : aliased Integer;

C : aliased Constant Integer := 1815;
CIP :=I'Access; (or CIP := C'Access;)

3.The type accessed by a general access type can be any type such as an array or re-

cord. So we can build chains from records statically declared.
Al : array (1.. 100) of aliased Integer,
IP := AI(I)'Access,

4. The accessed value could be a component of any composite type. Thus we could
point into the middle of a record (provided the component is marked as aliased).
type Ref Count is access constant Integer range O .. 1;
type Ref Count_Array is array (Integer range <>) of Ref_Count;
type Cells is
record
Life Count : aliased Integer range 0 .. 1;
Total Neighbour_Count : Integer range 0 .. 8;
Neighbour_Count: Ref Count_Array (1..8),

end record;

399

We can link the cells together
This_Cell.Neighbour Count(1) ;= Cell To_North Life_Count'Access.
The type Ref Count and the component Life Count have the same static subtypes
so that they can be checked against each other at compile time.
We can not apply the Access attribute to a component of an unconstrained variable if

the component depends upon discriminants.

5. Access discriminants and parameter.
We can have an access value as a discriminant and also as a parameter of a
subprogram.
procedure Select Animal (AN : access Animal),
procedure Print (A : in out Animal) is
begin
select Animal(Animal'Class(A)'Access);

end Print;

6. A discriminant of an access type.
It is useful for effectively parameterizing one record with another.
type Outer is limited private;
private
type Inner (Ptr : access Outer) is ..
type Outer is limited

record

Component : Inner(Outer'Access),

end record;

400

The component of type Inner has an access discriminant Ptr which refers back to the
instance of the record Outer.

If we declare

Obj : Outer;

then we create the following structure.

Ptr

Component

401

Inner can be extension of other type (e.g. Node).

type Inner(Ptr : access Outer'Class) is new Node with ...

Then we can navigate over the tree by using the access discriminant Ptr. The struc-

ture that is created is :

~

Value
Left
Right

> Ptr
Value |
Leﬁ
Right

| 402

Pir

Valuei »
Left
Right

HIERARCHICAL LIBRARY
The problems that Ada 83 had with the library package construction were:
> The coarse control of visibility of private types. When we wish to write two
logically distinct packages which nevertheless share a private type.
> The inability to extend without recompilation. When we wish to extend an
existing system by adding more facilities to it.
Ada 94 solves the above problems by the introduction of a hierarchical libraries.
A hierarchical library structure contains child packages and child subprograms.
The introduction of the hierarchical library provides decomposition of a library unit
with possibly distinct views of the hierarchy for the client and implementor.
The overall program structure is enhanced by the concept of partitions.
More control of elaboration order is provided.
A library package is only permitted to have a body if one is required by language
rules.
The mechanism of the program library is no longer specified so precisely. The main
issue is that partitions must be consistent.
Child Units.
An example of child library unit :
package Complex Numbers is

type Complex is private;
function "+" (X, Y: Complex) return Complex;

function Cons (R, I: Real) return Complex;
function Ri_Part(X : Complex) return Real,
function Im_Part(X : Complex) return Real,

private

end Complex Numbers;

403

We can add a child package as follows

package Complex Numbers Polar is
procedure Cons_Polar (R, Theta: Real) return Complex;
function "abs" (X : Complex) return Real,
function Arg (X : Complex) return Real;

end Complex Numbers Polar;

Child library units have the following general properties.

» Are logically dependent on their parent and have visibility of their parent's visible
and private parts. Within the body of Complex Numbers.Polar we can access the full de-
tails of the private type Complex.

» They are named like nested units; with an expanded name consisting of a unique
identifier and their parent's name as prefix. Complex Numbers Polar has as prefix Com-
plex_Numbers the parent's name and as a unique identifier the Polar.

» A child unit may be any kind of library unit including a generic unit or
instantiation.

» This structure may be iterated child units that are packages (or generic packages
) may themselves have children, yielding a tree like hierarchical structure, beginning at a
root library unit. Note however that a generic unit may only have generic children. For ex-
ample we can have a child of the Complex Numbers Polar package, named
Complex Numbers. Polar A .

Child library units observe the following visibility rules.

» A parent unit's visible definitions are visible everywhere in any child unit, whether
the unit is public or private.

> A parent unit's visible definitions are visible in the private part of a child unit,
whether the child is public or private.

> A parent unit's visible definitions are visible everywhere in any child unit, since the
child package is never visible outside of the parent.

» The entities in a parent's body are never visible in a child unit.

404

Private children
With private children we decompose a system for implementation reasons but with-
out giving any additional visibility to clients.

package OS is

type File Descriptor is private;

private
type File Descriptor is new Integer;

end OFS;

package OS.Exceptions is
File Descriptor_Error,
File Name Error,
Permission_Error : exception;

end OS Exceptions;

with OS Exceptions;

package OS File Manager is
type File Mode is (Read_Only, Write_Only, Read_Write),
function Open(File_Name : String; Mode : File_Mode) return
OS File Descriptor;
procedure Close (File : in OS File_Descriptor),

end OS File Manager;

405

procedure OS.Interpret (Command : String);

private package OS Internals is

end OS Internals;

private package OS Internals Debug is

end OS.Internals Debug;

OS.Internals and OS Internals_Debug are both private child packages of the OS

Two visibility rules we have to mention extra than the other occur with the general
child units.

» The private child is only visible within the subtree of the hierarchy whose root is
its parent. And moreover within that tree it is not visible to the specifications of any non-
private siblings.

OS Internals private child is visible to the bodies of OS itself, of OS File Manager
and of OSInterpret and it is also visible to both body and specification of
OS.Internal_Debug. It is not visible outside OS and a client package certainly cannot ac-
cess OS.Internals at all.

> The visible part of the private child can access the private part of its parent. So it
cannot export information about the private type to a client because it is not itself visible.
Nor can it export information indirectly via its non-private siblings because, as we have

seen, it is not visible to their specifications but only to their bodies.

406

Generic Children

If the parent unit is a non generic unit then the children unit maybe generic or not.

If the parent unit is generic then all the children must always be generic.

The main problems that must be solved in the design of the interaction between
genericity and children is the impact of new children on existing instantiations.

A generic child of a generic parent can be instantiated inside the parent and its hier-
archy (as normal) or externally but then only as a child of an instantiation of its parent.

generic

type T is private;
package Parent is

end Parent;

generic

package Parent.Child is

end Parent.Child,

and the typical instantiations might be
with Parent;

package Instance is new Parent (T => Integer);,

with Parent.Child;
package Instance Child is new Parent.Child;

407

Instantiations inside the parent hierarchy poses no problem since the instantiation has
visibility of the parent's formal parameters in the usual way.

Instantiations outside requires that the actual parameter corresponding to the formal
parameter is correspondingly visible to the instantiation of the child. This is assured by in-
sisting that the child is only instantiated as a child of an instance of the parent as in the

example.

408

Generics

> We can use a formal parameter notation for unconstrained types for example
type T(<>) is private;
We allow to declare an (uninitialized) object of type T in the generic body.
T is used only when we do not require a constrained type.

> The notation
type T is private;

is used when T is Integer or a constrained type or a record type with default

discriminants.

> The formal parameter can be

type T is tagged private;

Requires the actual type is tagged (not abstract).
> We can write the notations

type T is new S; or

type T is new S with private;
The actual type must be S or derived directly or indirectly from S.
In the second case, with private indicates that the actual type must also be tagged.
generic

type S is tagged private;
package P is

type T is new S with private;

-- operations on T
private

type T is new S with

record

-- additional components

end record;

> We instantiate the package P to add the operations of T to any existing tagged
type.
The resulting type will of course still be in the class of the type passed as actual
parameter.
type Shape is new Object with private;

We can extend the Shape type privately with generic operations.
private

package Q is new P(Object);
type Shape is new Q.T with null record;

410

LIST OF REFERENCES

1. Ada 9X Mapping / Revision Team " Ada 9X Reference Manual, The Language,
The standard Libraries " , June 1994.

2. Ada 9X Mapping / Revision Team " Ada 9X Rationale The Language, The Stan
dard Libraries " , June 1994.

3. Ada 9X Mapping / Revision Team "Changes from Ada 83 to Ada 9X",

July 1994,

4. Anderson M. Christine article " Ada 9X Project Report to the Public" in Cross
Talk THE DEFENSE SOFTWARE ENGINEERING REPORT , March 1994.

5. Anderson M Christine article " Ada 83 / Ada 9X Compatibility" in Cross Talk
THE DEFENSE SOFTWARE ENGINEERING REPORT , October 1992.

6. Barnes J.G.P. Programming in Ada Plus an Overview of Ada 9X, 1994.

7. Budd Timothy " An Introduction to Object Oriented Programming , 1991.

8. DaCosta Robert Defense Science Magazine Article "The History of Ada" ,
March 1584.

9. Feldman B. Michael , Koffman B. Elliot Ada Problem Solving and Program
Design, 1993.

10.Gonzalez Dean "Ada Programmer's handbook" , June 1991.

11.Ploedereder Erhard , How to Program in Ada 94, Using Ada 83, 1992.

12. Sammet Jean E. " Why Ada Is Not Just Another Programming Language

" Communications of the ACM, August 1986.
13. Skansholm Jan , Ada From the Beginning Second Edition, 1994.

411

412

INITIAL DISTRIBUTION LIST

1 Defense Technical Information Center

Cameron Station

Alexandria, VA 22304-6145

2.Dudley Knox LIDIary ... 2
Code 52

Naval Postgraduate School
Monterey, CA 93943-5101

3.Chairman, Code CS. ... e 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

4 LT Col. David A. Gaitros, Code CS/G1 ... 1
Computer Science Department

Naval Postgraduate School
Monterey, CA 93943

5. Lucia Lugi, Code CS/LQ ... 1

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

6. LT John T. DIMOUSIS.oooiiiiiiiiiioie et 2
Harilaou Trikoupi 9

Salamis, Athens

413

